Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2009 | 7 | 2 | 363-370

Article title

Wet-chemical treatment and electronic interface properties of silicon solar cell substrates

Content

Title variants

Languages of publication

EN

Abstracts

EN
On textured n-type silicon substrates for solar cell manufacturing, the relation between light trapping behavior, structural imperfections, energetic distribution of interface state densities and interface recombination losses were investigated by applying surface sensitive techniques. The field-modulated surface photovoltage (SPV), in-situ photoluminescence (PL) measurements, total hemispherical UV-NIR-reflectance measurements and electron microscopy (SEM) were employed to yield detailed information on the influence of wet-chemical treatments on preparation induced micro-roughness and electronic properties of polished and textured silicon substrates. It was shown that isotropic as well as anisotropic etching of light trapping structures result in high surface micro-roughness and density of interface states. Removing damaged surface layers in the nm range by wet-chemical treatments, the density of these states and the related interface recombination loss can be reduced. In-situ PL measurements were applied to optimise HF-treatment times aimed at undamaged, oxide-free and hydrogen-terminated substrate surfaces as starting material for subsequent solar cell preparations.

Contributors

  • Helmholtz-Zentrum Berlin für Materialien und Energie, Institut Siliziumphotovoltaik, Kekuléstraβe 5, D-12489, Berlin, Germany
  • Helmholtz-Zentrum Berlin für Materialien und Energie, Institut Siliziumphotovoltaik, Kekuléstraβe 5, D-12489, Berlin, Germany
author
  • Helmholtz-Zentrum Berlin für Materialien und Energie, Institut Siliziumphotovoltaik, Kekuléstraβe 5, D-12489, Berlin, Germany

References

  • [1] T. Korrmann, P. Garnier, G. Chabanne, A. Fortuin, Thin Solid Films, 517, 269 (2008) http://dx.doi.org/10.1016/j.tsf.2008.08.014[Crossref]
  • [2] J. Rappich, V.Yu. Timoshenko, Th. Dittrich, J. Electrochem. Soc. 144, 493 (1997) http://dx.doi.org/10.1149/1.1837438[Crossref]
  • [3] H. Angermann, Anal. Bioanal. Chem. 374, 676 (2002) http://dx.doi.org/10.1007/s00216-002-1450-4[Crossref]
  • [4] V. Yu. Timoshenko et al., J. Appl. Phys. 85, 4171 (1999) http://dx.doi.org/10.1063/1.370327[Crossref]
  • [5] J. Rappich et al., Microelectron. Eng. 80, 62 (2005) http://dx.doi.org/10.1016/j.mee.2005.04.022[Crossref]
  • [6] W. Henrion, M. Rebien, H. Angermann, A. Röseler, Appl. Surf. Sci. 202, 199 (2002) http://dx.doi.org/10.1016/S0169-4332(02)00923-6[Crossref]
  • [7] W. Henrion, A. Röseler, H. Angermann, M. Rebien, Phys. Status Solidi A 175, 121 (1999) http://dx.doi.org/10.1002/(SICI)1521-396X(199909)175:1<121::AID-PSSA121>3.0.CO;2-D[Crossref]
  • [8] W. J. Sievert, K.-U. Zimmermann, J. S. Starzynski, European Semiconductor 27, 17 (2005)
  • [9] W. Kern, J. Electrochem. Soc. 137, 1987 (1990) http://dx.doi.org/10.1149/1.2086825[Crossref]
  • [10] Y. A. Chabal, G. S. Higashi, K. Raghavachari, V. A. Burrows, J. Vac. Sci. Technol. A 7, 2104 (1989) http://dx.doi.org/10.1116/1.575980[Crossref]
  • [11] H. Angermann, Appl. Surf. Sci. 254, 8067 (2008) http://dx.doi.org/10.1016/j.apsusc.2008.03.022[Crossref]
  • [12] P. Allongue, C. H. Villeneuve, S. Morin, R. Boukherroub, D. D. M. Wayner, Electrochim. Acta, 4591 (2000)
  • [13] J. D. Hylton, A. R. Burgers, W. C. Sinke, J. Electrochem. Soc. 151, 6, 408 (2004) http://dx.doi.org/10.1149/1.1738137[Crossref]
  • [14] W. Weinreich, J. Acker, I. Gräber, Semicond. Sci. Technol., 1278 (2006)
  • [15] H. Hardtdegen et al., Phys. Status Solidi B 242, 2581 (2005) http://dx.doi.org/10.1002/pssb.200541099[Crossref]
  • [16] T. Hattori, Ultraclean Surface Processing of Silicon Wafers (Springer, Heidelberg, 1998) 437
  • [17] K. Heilig, Experimentelle Technik der Physik 14, 135 (1968)
  • [18] Y. W. Lam, J. Phys. D Appl. Phys. 4, 1370 (1971) http://dx.doi.org/10.1088/0022-3727/4/9/318[Crossref]
  • [19] T. Ohmi, M. Miyashita, M. Itano, T. Imaoka, I. Kawanabe, IEEE T. Electron. Dev. 39, 537 (1992) http://dx.doi.org/10.1109/16.123475[Crossref]
  • [20] H. F. Schmidt et al., Jpn. J. Appl. Phys. 34, 727 (1995) http://dx.doi.org/10.1143/JJAP.34.727[Crossref]
  • [21] H. Angermann et al., Thin Solid Films 516, 6775 (2008) http://dx.doi.org/10.1016/j.tsf.2007.12.033[Crossref]
  • [22] M. Schmidt et al., Thin Solid Films 515, 7475 (2007) http://dx.doi.org/10.1016/j.tsf.2006.11.087[Crossref]
  • [23] H. Angermann et al., In: G. Willeke, H. Ossenbrink, P. Helm (Eds.), 23nd European Photovoltaic Solar Energy Conference, 3–7 September 2007, Valencia, Spain, 1422
  • [24] W. D. Eades, R. M. Swanson, J. Appl. Phys. 58, 4267 (1985) http://dx.doi.org/10.1063/1.335562[Crossref]
  • [25] H. Angermann et al., Mat. Sci. Eng. B-Solid., DOI:10.1016/j.mseb.2008.10.044 [Crossref]
  • [26] V. Yu. Timoshenko, J. Rappich, Th. Dittrich, Jpn. J. Appl. Phys. 36, L58 (1997) http://dx.doi.org/10.1143/JJAP.36.L58[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-009-0055-3
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.