Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2009 | 7 | 2 | 350-355

Article title

Adatom diffusion on vicinal surfaces with permeable steps

Content

Title variants

Languages of publication

EN

Abstracts

EN
We study the behavior of single atoms on an infinite vicinal surface assuming certain degree of step permeability. Assuming complete lack of re-evaporation and ruling out nucleation the atoms will inevitably join kink sites at the steps but will do many attempts before that. Increasing the probability for step permeability or the kink spacing lead to increase of the number of steps crossed before incorporation of the atoms into kink sites. The asymmetry of the attachment-detachment kinetics (Ehrlich-Schwoebel effect) suppresses the step permeability and completely eliminates it in the extreme case of the infinite Ehrlich-Schwoebel barrier. A negligibly small drift of the adatoms in a direction perpendicular to the steps leads to a significant asymmetry of the distribution of the permeability events, the atoms thus visiting more distant steps in the direction of the drift. The curves are fitted with an exponential function containing a constant which can be considered as a length scale of the effect of the drift. Some conclusions concerning the stability of the vicinals are drawn.

Contributors

  • Institute of Physical Chemistry, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
author
  • Institute of Physical Chemistry, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria

References

  • [1] W. K. Burton, N. Cabrera, F. C. Frank, Philos. Tr. R. Soc. S.-A 243, 299 (1951) http://dx.doi.org/10.1098/rsta.1951.0006[Crossref]
  • [2] J. Krug, In: A. Voigt (Ed.), Multiscale Modeling in Epitaxial Growth (Birkhäuser, 2005), 70
  • [3] J. A. Venables, Introduction to Surface and Thin Film Processes (Cambridge University Press, 2000)
  • [4] A. Chernov, Modern Crystallography III, Crystal Growth (Springer Verlag, Berlin, 1984)
  • [5] S. Stoyanov, V. Tonchev, Phys. Rev. B 58, 1590 (1998) http://dx.doi.org/10.1103/PhysRevB.58.1590[Crossref]
  • [6] S. N. Filimonov, Yu. Hervieu, Surf. Sci. 553, 133 (2004) http://dx.doi.org/10.1016/j.susc.2004.01.047[Crossref]
  • [7] B. Voigtländer, T. Weber, Phys. Rev. Lett. 77, 3861 (1996) http://dx.doi.org/10.1103/PhysRevLett.77.3861[Crossref]
  • [8] S. Tanaka, N. C. Bartelt, C. C. Umbach, R. M. Tromp, J. M. Blakely, Phys. Rev. Lett. 78, 3342 (1997) http://dx.doi.org/10.1103/PhysRevLett.78.3342[Crossref]
  • [9] F. Buatier de Mongeot et al., Phys. Rev. Lett. 91, 016102 (2003) http://dx.doi.org/10.1103/PhysRevLett.91.016102[Crossref]
  • [10] D. J. Chadi, Phys. Rev. Lett. 59, 1691 (1987) http://dx.doi.org/10.1103/PhysRevLett.59.1691[Crossref]
  • [11] B. S. Swartzentruber, Y. W. Mo, R. Kariotis, M. G. Lagally, M. B. Webb, Phys. Rev. Lett. 65, 1913 (1990) http://dx.doi.org/10.1103/PhysRevLett.65.1913[Crossref]
  • [12] O. L. Alerhand, D. Vanderbilt, R. D. Meade, J. D. Joannopoulos, Phys. Rev. Lett. 61, 1973 (1988) http://dx.doi.org/10.1103/PhysRevLett.61.1973[Crossref]
  • [13] M. Sato, M. Uwaha, Y. Sato, Phys. Rev. B 62, 8452 (2000) http://dx.doi.org/10.1103/PhysRevB.62.8452[Crossref]
  • [14] M. Sato, Eur. J. Phys. B 59, 311 (2007) http://dx.doi.org/10.1140/epjb/e2007-00295-y[Crossref]
  • [15] O. Pierre-Louis, Phys. Rev. E 68, 021604 (2003) http://dx.doi.org/10.1103/PhysRevE.68.021604[Crossref]
  • [16] O. Pierre-Louis, C. R. Phys. 6, 11 (2005) http://dx.doi.org/10.1016/j.crhy.2004.11.005[Crossref]
  • [17] W. F. Chung, K. Bromann, M. S. Altman, Int. J. Mod. Phys. B 16, 4353 (2002) http://dx.doi.org/10.1142/S0217979202015431[Crossref]
  • [18] B. Ranguelov, M. S. Altman, I. Markov, Phys. Rev. B 75, 245419 (2007) http://dx.doi.org/10.1103/PhysRevB.75.245419[Crossref]
  • [19] I. Markov, Phys. Rev. B 56, 12544 (1997) http://dx.doi.org/10.1103/PhysRevB.56.12544[Crossref]
  • [20] J. Villain, J. Cryst. Growth 275, e2307 (2005) http://dx.doi.org/10.1016/j.jcrysgro.2004.11.369[Crossref]
  • [21] S. N. Filimonov, Yu. Hervieu, Phys. Low-Dimens. Str. 7/8, 15 (2002)
  • [22] S. N. Filimonov, Yu. Hervieu, Surf. Sci. 507-510, 270 (2002) http://dx.doi.org/10.1016/S0039-6028(02)01257-8[Crossref]
  • [23] G. Ehrlich, F. G. Hudda, J. Chem. Phys. 44, 1039 (1966) http://dx.doi.org/10.1063/1.1726787[Crossref]
  • [24] R. L. Schwoebel, E. J. Shipsey, J. Appl. Phys. 37, 3682 (1966) http://dx.doi.org/10.1063/1.1707904[Crossref]
  • [25] S. Stoyanov, Jpn. J. Appl. Phys. 30, 1 (1991) http://dx.doi.org/10.1143/JJAP.30.1[Crossref]
  • [26] V. V. Voronkov, Sov. Phys. Crystallogr. 15, 13 (1970)
  • [27] I. Markov, Crystal Growth for Beginners, Fundamentals of Nucleation, Crystal growth and Epitaxy, 2nd edition (World Scientific, 2003)
  • [28] B. Voigtländer, A. Zinner, Surf. Sci. 292, L775 (1993) http://dx.doi.org/10.1016/0039-6028(93)90377-V[Crossref]
  • [29] J. Tersoff, A. W. Denier van der Gon, R. M. Tromp, Phys. Rev. Lett. 72, 266 (1994) http://dx.doi.org/10.1103/PhysRevLett.72.266[Crossref]
  • [30] M. Villarba, H. Jónsson, Surf. Sci. 317, 15 (1994) http://dx.doi.org/10.1016/0039-6028(94)90249-6[Crossref]
  • [31] F. Leroy, P. Müller, J. J. Metois, O. Pierre-Louis, Phys. Rev. B 76, 045402 (2007) http://dx.doi.org/10.1103/PhysRevB.76.045402[Crossref]
  • [32] A. Latyshev, A. Aseev, A. Krasilnikov, S. Stenin, Surf. Sci. 213, 157 (1989) http://dx.doi.org/10.1016/0039-6028(89)90256-2[Crossref]
  • [33] K. Fujita, M. Ichikawa, S. Stoyanov, Phys. Rev. B 60, 16006 (1999) http://dx.doi.org/10.1103/PhysRevB.60.16006[Crossref]
  • [34] M. Ozdemir, A. Zangwill, Phys. Rev. B 45, 3718 (1992) http://dx.doi.org/10.1103/PhysRevB.45.3718[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-009-0048-2
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.