Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2009 | 7 | 3 | 549-554

Article title

A mathematical structure for the generalization of conventional algebra

Content

Title variants

Languages of publication

EN

Abstracts

EN
An abstract mathematical framework is presented in this paper as a unification of several deformed or generalized algebra proposed recently in the context of generalized statistical theories intended to treat certain complex thermodynamic or statistical systems. It is shown that, from a mathematical point of view, any bijective function can in principle be used to formulate an algebra in which the conventional algebraic rules are generalized.

Contributors

  • Institut Supérieur des Matériaux et Mécaniques Avancés du Mans, 44 Avenue Bartholdi, 72000, Le Mans, France
  • Institut Supérieur des Matériaux et Mécaniques Avancés du Mans, 44 Avenue Bartholdi, 72000, Le Mans, France
author
  • Institut Supérieur des Matériaux et Mécaniques Avancés du Mans, 44 Avenue Bartholdi, 72000, Le Mans, France
author
  • UMR 7575 LECA ENSCP-UPMC, 11 rue P. et M. Curie, 75231, Cedex 05, Paris, France
  • Institut Supérieur des Matériaux et Mécaniques Avancés du Mans, 44 Avenue Bartholdi, 72000, Le Mans, France

References

  • [1] C. Tsallis, J. Stat. Phys. 52, 479 (1988) http://dx.doi.org/10.1007/BF01016429[Crossref]
  • [2] C. Tsallis, R. S. Mendes, A. R. Plastino, Physica A 261, 534 (1999) http://dx.doi.org/10.1016/S0378-4371(98)00437-3[Crossref]
  • [3] S. Abe, Phys Lett. A 224, 326 (1997) http://dx.doi.org/10.1016/S0375-9601(96)00832-8[Crossref]
  • [4] G. Kaniadakis, Physica A 296, 405 (2001) http://dx.doi.org/10.1016/S0378-4371(01)00184-4[Crossref]
  • [5] G. Kaniadakis, Phys. Rev. E 66, 056125 (2002)
  • [6] G. Kaniadakis, Phys. Rev. E 72, 036108 (2005)
  • [7] L. Nivanen, Q. A. Wang, A. Le Méhauté, In: A. Le Méhauté, J. A. Tenreiro Machado, J. C. Trigeassou, J. Sabatier (Eds.), Fractional differentition and its applications (U Books on demand, 2005) 209
  • [8] L. Nivanen, A. Le Méhauté, Q. A. Wang, Math. Phys. 52, 437 (2003)
  • [9] E. P. Borges, Physica A 340, 95 (2004) http://dx.doi.org/10.1016/j.physa.2004.03.082[Crossref]
  • [10] H. Suyari, arXiv:cond-mat/0401541
  • [11] G. Kaniadakis, M. Lissia, A. M. Scarfone, Phys. Rev. E 71, 046128 (2005)
  • [12] A. Lavagno A. M. Scarfone, P. Narayana Swamy, J. Phys. A 40, 8635 (2007) http://dx.doi.org/10.1088/1751-8113/40/30/003[Crossref]
  • [13] A. Le Méhauté, Les géométries fractales (Hermès, Paris, 1990)
  • [14] A. Le Méhauté, Fractal Geometry, Theory and applications (Penton Press, London, 1991)
  • [15] G. Williams, D. C. Watts, T. Faraday Soc. 66, 2503 (1970) http://dx.doi.org/10.1039/tf9706602503[Crossref]
  • [16] R. Botet, M. Pşoszajczak, Universal fluctuations (World Scientific, Singapore, 2002) http://dx.doi.org/10.1142/9789812777799[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-009-0046-4
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.