Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2009 | 7 | 4 | 753-761

Article title

Structural, electronic and elastic properties of Ti2TlC, Zr2TlC and Hf2TlC

Content

Title variants

Languages of publication

EN

Abstracts

EN
Using First-principle calculations, we have studied the structural, electronic and elastic properties of M2TlC, with M = Ti, Zr and Hf. Geometrical optimization of the unit cell is in good agreement with the available experimental data. The effect of high pressures, up to 20 GPa, on the lattice constants shows that the contractions are higher along the c-axis than along the a axis. We have observed a quadratic dependence of the lattice parameters versus the applied pressure. The band structures show that all three materials are electrical conductors. The analysis of the site and momentum projected densities shows that bonding is due to M d-C p and M d-Tl p hybridizations. The M d-C p bonds are lower in energy and stiffer than M d-Tl p bonds. The elastic constants are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young’s modulus and Poisson’s ratio for ideal polycrystalline M2TlC aggregates. We estimated the Debye temperature of M2TlC from the average sound velocity. This is the first quantitative theoretical prediction of the elastic properties of Ti2TlC, Zr2TlC, and Hf2TlC compounds that requires experimental confirmation.

Publisher

Journal

Year

Volume

7

Issue

4

Pages

753-761

Physical description

Dates

published
1 - 12 - 2009
online
21 - 7 - 2009

Contributors

  • Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, University of Setif, 19000, Setif, Algeria

References

  • [1] M. W. Barsoum, Prog. Solid State Ch. 28, 201 (2000) http://dx.doi.org/10.1016/S0079-6786(00)00006-6[Crossref]
  • [2] M. W. Barsoum, T. El-Raghy, J. Am. Ceram. Soc. 79, 1953 (1996) http://dx.doi.org/10.1111/j.1151-2916.1996.tb08018.x[Crossref]
  • [3] M. W. Barsoum, M. Ali, T. El-Raghy, Metall. Mater. Trans. A 31, 1857 (2000) http://dx.doi.org/10.1007/s11661-006-0243-3[Crossref]
  • [4] H. Yoo, M. W. Barsoum, T. El-Raghy, Nature 407, 581 (2000) http://dx.doi.org/10.1038/35036686[Crossref]
  • [5] M. W. Barsoum, Physical properties of the MAX phases, Encyclopedia of Materials: Science and Technology (Elsevier, Amsterdam, 2006)
  • [6] C. F. Hu et al., Scripta Mater. 57, 893 (2007) http://dx.doi.org/10.1016/j.scriptamat.2007.07.038[Crossref]
  • [7] Z. Sun, D. Music, R. Ahuja, S. Li, J.M. Schneider, Phys. Rev. B 70, 092102 (2004) http://dx.doi.org/10.1103/PhysRevB.70.092102[Crossref]
  • [8] B. Manoun et al., Phys. Rev. B 73, 024110 (2006) http://dx.doi.org/10.1103/PhysRevB.73.024110[Crossref]
  • [9] A. Bouhemadou, R. Khenata, M. Chegaar, Eur. Phys. J. B 56, 209 (2007) http://dx.doi.org/10.1140/epjb/e2007-00115-6[Crossref]
  • [10] J. D. Hettinger et al., Phys. Rev. B 72, 115120 (2005) http://dx.doi.org/10.1103/PhysRevB.72.115120[Crossref]
  • [11] J. A. Warner, S. K. R. Patil, S. V. Khare, K. Masiulaniec, App. Phys. Lett. 88, 101911 (2006) http://dx.doi.org/10.1063/1.2182009[Crossref]
  • [12] R. G. Leisure, K. Foster, J. E. Hightowe, D. S. Agosta, J. Alloy. Compd. 356, 283 (2003) http://dx.doi.org/10.1016/S0925-8388(02)01272-0[Crossref]
  • [13] M. I. Eremetsl, W. Kohn, Phys. Rev. 136, B864 (1964) http://dx.doi.org/10.1103/PhysRev.136.B864[Crossref]
  • [14] W. Kohn, L. J. Sham, Phys. Rev. 140, A1133 (1965) http://dx.doi.org/10.1103/PhysRev.140.A1133[Crossref]
  • [15] M. D. Segall et al., J. Phys.-Condens. Mat. 14, 2717 (2002) http://dx.doi.org/10.1088/0953-8984/14/11/301[Crossref]
  • [16] D. M. Ceperly, B. J. Alder, Phys. Rev. Lett. 45, 566 (1980) http://dx.doi.org/10.1103/PhysRevLett.45.566[Crossref]
  • [17] J. P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981) http://dx.doi.org/10.1103/PhysRevB.23.5048[Crossref]
  • [18] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) http://dx.doi.org/10.1103/PhysRevLett.77.3865[Crossref]
  • [19] D. Vanderbilt, Phys. Rev. B 41, 7892 (1990) http://dx.doi.org/10.1103/PhysRevB.41.7892[Crossref]
  • [20] H. J. Monkhorst, J. D. Pack, Phys. Rev. B 13, 5188 (1976) http://dx.doi.org/10.1103/PhysRevB.13.5188[Crossref]
  • [21] B. Manoun et al., Appl. Phys. Lett. 85, 1514 (2004) http://dx.doi.org/10.1063/1.1784516[Crossref]
  • [22] B. Manoun, F. X. Zhang, S. K. Saxena, T. El-Raghy, M. W. Barsoum, J. Phys. Chem. Solids 67, 2091 (2006) http://dx.doi.org/10.1016/j.jpcs.2006.05.051[Crossref]
  • [23] S. R. Kulkarni et al., J. Alloy. Compd. 448, L1 (2008) http://dx.doi.org/10.1016/j.jallcom.2006.10.086[Crossref]
  • [24] R. S. Kumar, S. Rekhi, A. L. Cornelius, M. W. Barsoum, App. Phys. Lett. 86, 111904 (2005) http://dx.doi.org/10.1063/1.1884261[Crossref]
  • [25] B. Manoun et al., Phys. Rev. B 73, 024110 (2006) http://dx.doi.org/10.1103/PhysRevB.73.024110[Crossref]
  • [26] G. Hug, M. Jaouen, M. W. Barsoum, Phys. Rev. B 71, 024105 (2005) http://dx.doi.org/10.1103/PhysRevB.71.024105[Crossref]
  • [27] B. Manoun et al., App. Phys. Lett. 84, 2799 (2004) http://dx.doi.org/10.1063/1.1699477[Crossref]
  • [28] B. Manoun et al., J. Alloy. Compd. 433, 265 (2007) http://dx.doi.org/10.1016/j.jallcom.2006.06.052[Crossref]
  • [29] B. Manoun, S. K. Sexena, M. W. Barsoum, Appl. Phys. Lett. 86, 101906 (2005) http://dx.doi.org/10.1063/1.1875750[Crossref]
  • [30] A. Bouhemadou, R. Khenata, J. Appl. Phys. 102, 043528 (2007) http://dx.doi.org/10.1063/1.2773634[Crossref]
  • [31] J. Emmerlich, D. Music, A. Houben, R. Dronskowski, J. M. Schneider, Phys. Rev. B 76, 224111 (2007) http://dx.doi.org/10.1103/PhysRevB.76.224111[Crossref]
  • [32] F. Birch, J. Geophys. Res. 83, 1257 (1978) http://dx.doi.org/10.1029/JB083iB03p01257[Crossref]
  • [33] D. Music, Z. Sun, R. Ahuja, J. M. Schneider, Phys. Rev. B 73, 134117 (2006) http://dx.doi.org/10.1103/PhysRevB.73.134117[Crossref]
  • [34] Jr. C. D. Gelatt, A. R. Williams, V. L. Moruzzi, Phys. Rev. B 27, 2005 (1983) http://dx.doi.org/10.1103/PhysRevB.27.2005[Crossref]
  • [35] J. Y. Wang, Y. C. Zhou, Phys. Rev. B 69, 214111 (2004) http://dx.doi.org/10.1103/PhysRevB.69.214111[Crossref]
  • [36] G. Hug, Phys. Rev. B 74, 184113 (2006) http://dx.doi.org/10.1103/PhysRevB.74.184113[Crossref]
  • [37] V. Milman, B. Winkler, M. I. J. Probert, J. Phys.-Condens. Mat. 17, 2233 (2005) http://dx.doi.org/10.1088/0953-8984/17/13/019[Crossref]
  • [38] M. J. Mehl, B. M. Klein, D. A. Papaconstantopoulos, In: J.H. Westbrook, R.L. Fleischeir (Eds.), Intermetallic Compounds: Principle and Practice, Volume I: Principles (John Wiley and Sons, 1995)
  • [39] A. Reuss, A. Angew, Math. Mech. Solids 8, 55 (1929)
  • [40] W. Voigt, Lehrbush der Kristallphysik (Taubner, Leipzig, 1928)
  • [41] R. Hill, P. Phys. Soc. Lond. A 65, 349 (1952) http://dx.doi.org/10.1088/0370-1298/65/5/307[Crossref]
  • [42] O.L. Anderson, J. Phys. Chem. Solids 24, 909 (1963) http://dx.doi.org/10.1016/0022-3697(63)90067-2[Crossref]
  • [43] E. Schreiber, O. L. Anderson, N. Soga, Elastic Constants and Their Measurements (McGraw-Hill, New York, 1973)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-009-0022-z
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.