Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2009 | 7 | 1 | 67-78

Article title

Qualitative analysis of the phase flow of an integrable approximation of a generalized roto-translatory problem

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this paper, we consider an integrable approximation of the planar motion of a gyrostat in Newtonian interaction with a spherical rigid body. We then describe the Hamiltonian dynamics, in the fibers of constant total angular momentum vector of an invariant manifold of motion. Finally, using the Liouville-Arnold theorem and a particular analysis of the momentum map in its critical points, we obtain a complete topological classification of the different invariant sets of the phase flow of this problem. The results can be applied to study two-body roto-translatory problems where the rotation of one of them has a strong influence on the orbital motion of the system.

Contributors

author
  • Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, Cartagena (Murcia), Spain
  • Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, Cartagena (Murcia), Spain
author
  • Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, Cartagena (Murcia), Spain
  • Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, Cartagena (Murcia), Spain

References

  • [1] R. Abraham, J. E. Marsden, Foundations in Mechanics (Addison-Wesley, Massachusetts, 1978)
  • [2] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, Dynamical Systems III (Encyclopaedia of Mathematical Sciences) (Springer Verlag, Berlin, 1978)
  • [3] Antonio Elipe, M. Arribas, A. Riaguas, J. Phys. A-Math. Gen. 30, 587 (1997) http://dx.doi.org/10.1088/0305-4470/30/2/021[Crossref]
  • [4] E. G. Fahnestock, D. J. Scheeres, Celest. Mech. Dyn. Astr. 96, 317 (2006) http://dx.doi.org/10.1007/s10569-006-9045-6[Crossref]
  • [5] E. Leimanis, The general problem of the motion of coupled rigid bodies about a fixed point (Springer Verlag, Berlin, 1965)
  • [6] J. Llibre, A. E. Teruel, C. Valls, A. de la Fuente, J. Phys. A-Math. Gen. 34, 1919 (2001) http://dx.doi.org/10.1088/0305-4470/34/9/309[Crossref]
  • [7] F. Marchis, P. Descamps, D. Hestroffer, J. Berthier, I. de Pater, American Astronomical Society 36, 1180 (2004)
  • [8] J. A. Vera and A. Vigueras, Advances in the Astronautical Sciences 123, 2775 (2005)
  • [9] J. A. Vera, A. Vigueras, Celest. Mech. Dyn. Astr 94, 289 (2006) http://dx.doi.org/10.1007/s10569-005-5910-y[Crossref]
  • [10] L. S. Wang, K. Y. Lian, P. T. Chen, IEEE. T. Automat. Contr. 40, 1732 (1995) http://dx.doi.org/10.1109/9.467678[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-008-0140-z
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.