EN
In this paper, we consider an integrable approximation of the planar motion of a gyrostat in Newtonian interaction with a spherical rigid body. We then describe the Hamiltonian dynamics, in the fibers of constant total angular momentum vector of an invariant manifold of motion. Finally, using the Liouville-Arnold theorem and a particular analysis of the momentum map in its critical points, we obtain a complete topological classification of the different invariant sets of the phase flow of this problem. The results can be applied to study two-body roto-translatory problems where the rotation of one of them has a strong influence on the orbital motion of the system.