EN
In a first stage, the paper deals with the derivation and the solution of the equation of the probability density function of a stochastic system driven simultaneously by a fractional Gaussian white noise and a fractional Poissonian white noise both of the same order. The key is the Taylor’s series of fractional order f(x + h) = E
α(hαDx
α)f(x) where E
α() denotes the Mittag-Leffler function, and D
x
α is the so-called modified Riemann-Liouville fractional derivative which removes the effects of the non-zero initial value of the function under consideration. The corresponding fractional linear partial differential equation is solved by using a suitable extension of the Lagrange’s technique involving an auxiliary set of fractional differential equations. As an example, one considers a half-oscillator of fractional order driven by a fractional Poissonian noise.