Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2008 | 6 | 3 | 563-568

Article title

Evolution of the polarization of electromagnetic waves in weakly anisotropic inhomogeneous media - a comparison of quasi-isotropic approximations of the geometrical optics method and the Stokes vector formalism

Content

Title variants

Languages of publication

EN

Abstracts

EN
The main methods describing polarization of electromagnetic waves in weakly anisotropic inhomogeneous media are reviewed: the quasi-isotropic approximation (QIA) of geometrical optics method that deals with coupled equations for electromagnetic field components, and the Stokes vector formalism (SVF), dealing with Stokes vector components, which are quadratic in electromagnetic field intensity. The equation for the Stokes vector evolution is shown to be derived directly from QIA, whereas the inverse cannot be true. Derivation of SVF from QIA establishes a deep unity of these two approaches, which happen to be equivalent up to total phase. It is pointed out that in contrast to QIA, the Stokes vector cannot be applied for a polarization analysis of the superposition of coherent electromagnetic beams. Additionally, the ability of QIA to describe a normal modes conversion in inhomogeneous media is emphasized.

Contributors

author
author
  • Department of Physics, Maritime University Szczecin, Wały Chrobrego 1-2, 70-500, Szczecin, Poland

References

  • [1] K.G. Budden, Radio Waves in the Ionosphere (Cambridge Univ. Press, Cambridge, UK, 1961)
  • [2] V.I. Ginzburg, Propagation of Electromagnetic waves in Plasma (Gordon and Breach, New York, 1970)
  • [3] Yu.A. Kravtsov, Sov. Phys.-Doklady 13, 1125 (1969)
  • [4] Yu.A. Kravtsov, O.N. Naida, A.A. Fuki, Physics-Uspekhi 39, 129 (1996) http://dx.doi.org/10.1070/PU1996v039n02ABEH000131[Crossref]
  • [5] A.A. Fuki, Yu.A. Kravtsov, O.N. Naida, Geometrical Optics of Weakly Anisotropic Media (Gordon & Breach, Lond., N.Y., 1997) [WoS]
  • [6] Yu.A. Kravtsov, Yu.I. Orlov, Geometrical optics of inhomogeneous media (Springer Verlag, Berlin, Heidelberg, 1990)
  • [7] Yu.A. Kravtsov, Geometrical Optics in Engineering Physics (Alpha Science, London, 2005)
  • [8] R.M.A. Azzam, J. Opt. Soc. Am. 68, 1756 (1978) http://dx.doi.org/10.1364/JOSA.68.001756[Crossref]
  • [9] S.E. Segre, Plasma Phys. Control. F 41, R57 (1999) http://dx.doi.org/10.1088/0741-3335/41/2/001[Crossref]
  • [10] S.E. Segre, J. Opt. Soc. Am. A 18, 2601 (2001) http://dx.doi.org/10.1364/JOSAA.18.002601[Crossref]
  • [11] S.E. Segre, J. Phys. D 36, 2806 (2003) http://dx.doi.org/10.1088/0022-3727/36/22/006[Crossref]
  • [12] S.E. Segre, V. Zanza, Plasma Phys. Control. F 48, 339 (2006) http://dx.doi.org/10.1088/0741-3335/48/3/001[Crossref]
  • [13] S.E. Segre, Preprint RT/ERG/FUS/2001/13, 2001, ENEA, Frascati, Italy (2001)
  • [14] K.Yu. Bliokh, D.Yu. Frolov, Yu.A. Kravtsov, Phys. Rev. A 75, 053821 (2007) http://dx.doi.org/10.1103/PhysRevA.75.053821[Crossref]
  • [15] Yu.A. Kravtsov, B. Bieg, K.Yu. Bliokh, J. Opt. Soc. Am. A 24, 3388 (2007) http://dx.doi.org/10.1364/JOSAA.24.003388[Crossref]
  • [16] M.M. Popov, Vestnik Leningradskogo Universiteta (Bulletin of the Leningrad University) 22, 44 (1969)
  • [17] V.M. Babich, V.S. Buldyrev, Short-Wavelength Diffraction Theory: Asymptotic Methods (Springer Verlag, Berlin, 1990)
  • [18] V. Éervený, Seismic Ray Theory (Cambridge University Press, Cambridge, UK, 2001)
  • [19] Yu.A. Kravtsov, O.N. Naida, Sov. Phys-JETP 44, 122 (1976)
  • [20] M. Born, E. Wolf, Principles of Optics, 5th edition (Pergamon, Oxford 1975)
  • [21] Z.H. Czyz, B. Bieg, Yu.A. Kravtsov, Phys. Let. A 368, 101 (2007) http://dx.doi.org/10.1016/j.physleta.2007.03.055[Crossref]
  • [22] Yu.A. Kravtsov, P. Berczynski, B. Bieg, K.Yu. Bliokh, Z.H. Czyz, In: PIERS2007, CD-ROM, ISSN: 1559-9450, Progress in Electromagnetics Research Symposium PIERS-2007, 27–30 August 2007, Prague, Czech Republic

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-008-0044-y
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.