Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2007 | 5 | 3 | 377-384

Article title

On the symmetry of magnetic structures in terms of the fibre bundles

Content

Title variants

Languages of publication

EN

Abstracts

EN
The paper concerns the application of the fibre bundle approach to the description of the magnetic structures and their symmetry groups. Hence the explicit formulas describing both the variety of magnetic structures and their symmetry groups have been derived. The assumption was made that the bundle sections correspond to magnetizations of the separate crystal planes multiplied by a certain Gaussian factor defined in ℝ3, the last factor making the problem continuous and more physical.

Publisher

Journal

Year

Volume

5

Issue

3

Pages

377-384

Physical description

Dates

published
1 - 9 - 2007
online
13 - 5 - 2007

Contributors

  • Institute of Physics, University of Silesia, ul. Uniwersytecka 4, PL-40007, Katowice, Poland
author
  • Institute of Physics, University of Silesia, ul. Uniwersytecka 4, PL-40007, Katowice, Poland
  • Institute of Physics, University of Silesia, ul. Uniwersytecka 4, PL-40007, Katowice, Poland
  • Institute of Physics, University of Silesia, ul. Uniwersytecka 4, PL-40007, Katowice, Poland
  • Institute of Physics, University of Silesia, ul. Uniwersytecka 4, PL-40007, Katowice, Poland

References

  • [1] D.B. Litvin: “Spin Translation Groups and Neutron Diffraction Analysis”, Acta Crystallogr. A, Vol. 29, (1973), pp. 651–660. http://dx.doi.org/10.1107/S0567739473001658[Crossref]
  • [2] D.B. Litvin and W. Opechowski: “Spin Groups”, Physica, Vol. 76, (1974), pp. 538–554. http://dx.doi.org/10.1016/0031-8914(74)90157-8[Crossref]
  • [3] D.B. Litvin: “Spin Point Groups”, Acta Crystallogr. A, Vol. 33, (1977), pp. 279–287. http://dx.doi.org/10.1107/S0567739477000709[Crossref]
  • [4] V.A. Koptsik and I.N. Kotzev: “K teorii i klassifikatsii grupp tsvetnoj simmetrii I. P-simmetriya” (“On the Theory and Classification of Color Symmetry Groups. I. Psymmetry”) [In Russian], In: Communications of the Joint Inst. for Nuclear Research, Dubna, 1974, pp. 4–8067.
  • [5] V.A. Koptsik: “Advances in theoretical crystallography. Color symmetry of defect crystals”, Krist. Tech., Vol. 10, (1975), pp. 231–245. [Crossref]
  • [6] V.A. Koptsik: “The theory of symmetry of space modulated crystal structures”, Ferroelectrics, Vol. 21, (1978), pp. 499–501.
  • [7] R. Lifshitz: “Symmetry of Magnetic Ordered Quasicrystals”, Phys. Rev. Lett., Vol. 80, (1998), pp. 2717–2720. http://dx.doi.org/10.1103/PhysRevLett.80.2717[Crossref]
  • [8] D.B. Litvin: “Wreath groups”, Physica, Vol. 101A, (1980), pp. 339–350. [Crossref]
  • [9] D.B. Litvin: “Wreath products and the symmetry of incommensurate crystals”, Ann. Israel Phys. Soc., Vol. 3, (1980), pp. 371–374.
  • [10] D. B. Litvin: “Wreath groups-symmetry of crystals with structural distortions”, Phys. Rev. B, Vol. 21, (1980), pp. 3184–3192. http://dx.doi.org/10.1103/PhysRevB.21.3184[Crossref]
  • [11] R. Sulanke and P. Wintgen: Differentialgeometrie und Faserbündel, Deutscher Verlag der Wissenschaften, Berlin, 1972.
  • [12] P. Gusin and J. Warczewski: “On the relations between magnetization and topological invariants of the physical system”, J. Magn. Magn. Mater., Vol. 281, (2004), pp. 178–187. http://dx.doi.org/10.1016/j.jmmm.2004.04.102[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-007-0023-8
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.