Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 12 | 12 | 1271-1279

Article title

New genetic insights to consider coffee waste as feedstock for fuel, feed, and chemicals

Content

Title variants

Languages of publication

EN

Abstracts

EN
Caffeine is a natural plant product found in many drinks, including coffee, tea, soft and energy drinks. Due to caffeine’s presence in the environment, microorganisms have evolved two different mechanisms to live on caffeine. The genetic maps of the caffeine N-demethylation pathway and C-8 oxidation pathway have been discovered in Pseudomonas putida CBB5 and Pseudomonas sp. CBB1, respectively. These genes are the only characterized bacterial caffeine-degrading genes, and may be of great value in producing fine chemicals, biofuels, and animal feed from coffee and tea waste. Here, we present preliminary results for production of theobromine and 7-methylxanthine from caffeine and theobromine, respectively, by two strains of metabolically engineered E. coli. We also demonstrate complete decaffeination of tea extract by an immobilized mixed culture of Klebsiella and Rhodococcus cells. These processes provide a first level demonstration of biotechnological utilization of coffee and tea waste.

Publisher

Journal

Year

Volume

12

Issue

12

Pages

1271-1279

Physical description

Dates

published
1 - 12 - 2014
online
7 - 6 - 2014

Contributors

References

  • [1] Statistics on Coffee, Historical Data, All exporting countries total production crop years 2010/11 to 2012/13 (International Coffee Organization, London, UK, 2013) http://www.ico.org/historical/2010-19/PDF/TOTPRODUCTION.pdf
  • [2] Top 25 agricultural import commodities, with level of processing, by calendar year (United States Department of Agriculture, Washington D.C., USA, 2013) 1
  • [3] Data for calendar year commencing: 2011, data sheet (International Coffee Organization, USA, 2011) http://www.ico.org/countries/usa.pdf.
  • [4] M.R. Adams, J. Dougan, In: R.J. Clarke. R. Macrae, (Eds.), Waste Products, Coffee: Volume 2. Technology (Elsevier Applied Science Publishers, Ltd, Essex, England, 1987) 257–291
  • [5] A. Pandey, C.R. Soccol, P. Nigam, D. Brand. R. Mohan, S. Roussos, Biochem. Eng. J. 6, 153 (2000) http://dx.doi.org/10.1016/S1369-703X(00)00084-X[Crossref]
  • [6] N. Kondamudi, S.K. Mohapatra, M. Misra, J. Agric. Food Chem. 56, 11757 (2008) http://dx.doi.org/10.1021/jf802487s[Crossref]
  • [7] G.R. Waller, Biologia Plantarum 31, 418 (1989) http://dx.doi.org/10.1007/BF02876217[Crossref]
  • [8] R.G. Hollingsworth, J.W. Amrstrong, E. Campbell, Nature 361, 1763 (1980)
  • [9] J.A. Nathanson, Science 226, 184 (1984) http://dx.doi.org/10.1126/science.6207592[Crossref]
  • [10] A.S. Franca, L.S. Oliveira, In: G.S. Ashworth, P. Azevedo (Eds.), Agricultural Wastes, Coffee processing solid wastes: Current uses and future perspectives (Nova Science Publishers, Inc., New York, U. S. A., 2009) 171–189
  • [11] R. Bressani, in: J.E. Braham, R. Bressani (Eds.), Coffee Pulp: Composition, Technology, and Utilization, Potential uses of coffee-berry by-products (International Development Research Centre, Ottawa, Ontario, Canada, 1979) 17–24
  • [12] C. Porres, D. Alvarez, J. Calzada, Biotechnol. Adv. 11, 519 (1993) http://dx.doi.org/10.1016/0734-9750(93)90020-N[Crossref]
  • [13] C.L. Yu, T.M. Louie, R. Summers, Y. Kale, S. Gopishetty, M. Subramanian, J. Bacteriol. 191, 4624 (2009) http://dx.doi.org/10.1128/JB.00409-09[Crossref]
  • [14] R.M. Summers, T.M. Louie, C.L. Yu. M. Subramanian, Microbiology 157, 583 (2011) http://dx.doi.org/10.1099/mic.0.043612-0[Crossref]
  • [15] R.M. Summers, T.M. Louie, C.L. Yu, L. Gakhar, K.C. Louie, M. Subramanian, J. Bacteriol. 194, 2041 (2012) http://dx.doi.org/10.1128/JB.06637-11[Crossref]
  • [16] R.M. Summers, J.L. Seffernick, E.M. Quandt. C.L. Yu, J.E. Barrick, M.V. Subramanian. J. Bacteriol. 195, 3933 (2013) http://dx.doi.org/10.1128/JB.00585-13[Crossref]
  • [17] C.L. Yu, Y. Kale, S. Gopishetty, T.M. Louie. M. Subramanian, J. Bacteriol. 190, 772 (2008) http://dx.doi.org/10.1128/JB.01390-07[Crossref]
  • [18] S.K. Mohanty, C.L. Yu, S. Das, T.M. Louie. L. Gakhar, M. Subramanian, J. Bacteriol. 194, 3872 (2012) http://dx.doi.org/10.1128/JB.00597-12[Crossref]
  • [19] C.A. Woolfolk, J. Bacteriol. 123, 1088 (1975)
  • [20] R. Blecher, F. Lingens, Hoppe-Seyler’s Z. Physiol. Chem. 358, 807 (1977) http://dx.doi.org/10.1515/bchm2.1977.358.2.807[Crossref]
  • [21] Y. Asano, T. Komeda, H. Yamada, Biosci., Biotechnol., Biochem. 58, 2303 (1993) http://dx.doi.org/10.1271/bbb.58.2303[Crossref]
  • [22] M. Glück, F. Lingens, Appl. Microbiol. Biotechnol. 28, 59 (1988) http://dx.doi.org/10.1007/BF00250499[Crossref]
  • [23] O.F.P. Sideso, A.C. Marvier, N.A. Katerelos. P.W. Goodenough, Int. J. Food Sci. Tech. 36, 693 (2001) http://dx.doi.org/10.1046/j.1365-2621.2001.00496.x[Crossref]
  • [24] W.J. Middelhoven, C.M. Bakker, Eur. J. Appl. Microbial. Biotechnol. 15, 214 (1982) http://dx.doi.org/10.1007/BF00499958[Crossref]
  • [25] D.M. Yamaoka-Yano, P. Mazzafera, Rev. Microbiol. 30, 62 (1999) http://dx.doi.org/10.1590/S0001-37141999000100013[Crossref]
  • [26] W. Hohnloser, B. Osswal, F. Lingens, Hoppe-Seyler’s Z. Physiol. Chem. 361, 1763 (1980) http://dx.doi.org/10.1515/bchm2.1980.361.2.1763[Crossref]
  • [27] P. Mazzafera, O. Olsson, G. Sandberg, Microb. Ecol. 31, 199 (1996) http://dx.doi.org/10.1007/BF00167865[Crossref]
  • [28] K.M. Madyastha, G.R. Sridhar, Biochem. Biophys. Res. Commun. 249, 178 (1998) http://dx.doi.org/10.1006/bbrc.1998.9102[Crossref]
  • [29] K.M. Madyastha, G.R. Sridhar, B.B. Vadiraja. Y.S. Madhavi, Biochem. Biophys. Res. Commun. 263, 460 (1999) http://dx.doi.org/10.1006/bbrc.1999.1401[Crossref]
  • [30] B.R. Mohapatra, N. Harris, R. Nordin, A. Mazumder, J. Biotechnol. 125, 319 (2006) http://dx.doi.org/10.1016/j.jbiotec.2006.03.018[Crossref]
  • [31] V.R. Sarath Babu, S. Patra, M.S. Thakur. N.G. Karanth, M.C. Varadaraj, Enzyme Microb. Technol. 37, 617 (2005) http://dx.doi.org/10.1016/j.enzmictec.2005.03.022[Crossref]
  • [32] S.S. Dash, S.N. Gummadi, J. Basic Microbiol. 48, 227 (2008) http://dx.doi.org/10.1002/jobm.200800004[Crossref]
  • [33] C.A. Woolfolk, J.S. Downard, J. Bacteriol. 130, 1175 (1977)
  • [34] S.K. Mohanty, A. Genetic characterization of the caffeine C-8 oxidation pathway in Pseudomonas sp. CBB1. B. Validation of caffeine dehydrogenase as a suitable enzyme for a rapid caffeine diagnostic test, PhD thesis (University of Iowa, Iowa City, Iowa, U.S.A., 2013)
  • [35] A.J. Link, D. Phillips, G.M. Church, J. Bacteriol. 179, 6228 (1997)
  • [36] C.T. Chung, S.L. Niemela, R.H. Miller, Proc. Natl. Acad. Sci. U. S. A. 86, 2172 (1989) http://dx.doi.org/10.1073/pnas.86.7.2172[Crossref]
  • [37] W. Seubert, J. Bacteriol. 79, 426 (1960)
  • [38] S.R. Gopishetty, T.M. Louie, C.L. Yu. M.V. Subramanian, In: H.N. Thatoi, B.B. Mishra (Eds.), Microbial degradation of caffeine, methylxanthines, and its biotechnological applications, Microbial Biotechnology: Methods and Applications (Narosa Publishing House Pvt, Ltd, New Delhi, India, 2012) 44–67
  • [39] P. Mazzafera, Scientia Agricola 59, 815 (2002) http://dx.doi.org/10.1590/S0103-90162002000400030[Crossref]
  • [40] S. Roussos, L. Hannibal, M.A. Aquiahuatl. M.R.T. Hernandes, S. Marakis, J. Food Sci. Technol. 31, 316 (1994)
  • [41] M. Hakil, F. Voisinet, G.V. Gonzalez, C. Augur, Process Biochem. 35, 103 (1999) http://dx.doi.org/10.1016/S0032-9592(99)00039-4[Crossref]
  • [42] D. Brand, A. Pandey, S. Roussos, C.R. Soccol, Enzyme Microb. Technol. 27, 127 (2000) http://dx.doi.org/10.1016/S0141-0229(00)00186-1[Crossref]
  • [43] C.V. Tagliari, R.K. Sanson, A. Zanette, R. Teixeira Franco, C.R. Soccol, Braz. J. Microbiol. 34, 102 (2003) http://dx.doi.org/10.1590/S1517-83822003000500035[Crossref]
  • [44] S.N. Gummadi, B. Bhavya, N. Ashok, Appl. Microbiol. Biotechnol. 93, 545 (2012) http://dx.doi.org/10.1007/s00253-011-3737-x[Crossref]
  • [45] K. Narasimharao, S. Mohapatra, M. Misra, J. Agric. Food Chem. 56, 11757 (2008) http://dx.doi.org/10.1021/jf802487s[Crossref]
  • [46] Y. Nishida, J. Pharm. Pharmacol. 43, 885 (1991) http://dx.doi.org/10.1111/j.2042-7158.1991.tb03204.x[Crossref]
  • [47] V. Schlotte, A. Sevanian, P. Hochstein. K.U. Weithmann, Free Radical Biol. Med. 25, 839 (1998) http://dx.doi.org/10.1016/S0891-5849(98)00160-9[Crossref]
  • [48] E.M. Quandt, M.J. Hammerling, R.M. Summers, P.B. Otoupal, B. Slater, R.N. Alnahhas, A. Dasgupta, J.L. Bachman, M.V. Subramanian, J.E. Barrick, ACS Synth. Biol. 2, 301 (2013) http://dx.doi.org/10.1021/sb4000146[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11532-014-0550-2
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.