Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 12 | 4 | 509-518

Article title

Interfacial behavior of water bound to nitrocellulose containing residual nitric and sulfuric acids

Content

Title variants

Languages of publication

EN

Abstracts

EN
To prepare nitrocellulose (NC), microcrystalline cellulose was treated in a mixture of nitric and sulfuric acids. Prepared NC containing a small amount of acids was studied at a different hydration degree (h = 10–1000 mg g−1) in different dispersion media (chloroform-d, acetone-d6 or their mixtures) using low-temperature 1H NMR spectroscopy. The hydration degree and the presence of residual acids affected the temperature dependence of the chemical shifts of proton resonance of water bound to NC. The Gibbs free energy of bound water became less negative with increasing hydration rate. The chloroform and acetone media affect the behavior of bound-to-NC water unfrozen at T<273 K differently. Quantum chemical calculations were performed using ab initio (HF/6-31G(d,p)), DFT (B3LYP/6-31G(d,p)) and semiempirical PM7 methods to analyze the interfacial behavior of water interacting with NC containing residual amounts of nitric and sulfuric acids.

Publisher

Journal

Year

Volume

12

Issue

4

Pages

509-518

Physical description

Dates

published
1 - 4 - 2014
online
16 - 1 - 2014

Contributors

  • Chuiko Institute of Surface Chemistry
  • Warsaw University of Technology
  • Chuiko Institute of Surface Chemistry
  • Institute of Bioorganic Chemistry and Petrochemistry
author
  • Maria Curie-Skłodowska University
  • Chuiko Institute of Surface Chemistry

References

  • [1] E.Yu. Orlova, Chemistry of High Explosives (Chemistry, Leningrad, 1973) (in Russian)
  • [2] P.C. Painter, M.M. Coleman, Essentials of Polymer Science and Engineering (DEStech Publications, Inc., Lancaster, USA, 2009)
  • [3] R. Talbert, Paint Technology Handbook (Grand Rapids, Michigan, USA, 2007) http://dx.doi.org/10.1201/9781420017786[Crossref]
  • [4] T. Cheeseright, M. Mackey, S. Rose, J.G. Vinter, Expert Opin. Drug Discov. 2, 131 (2007) http://dx.doi.org/10.1517/17460441.2.1.131[Crossref]
  • [5] TorchLite 10.0.1 wwwhttp://www.cresset-group.com/products/torch/torchlite/ (accessed Sept 4, 2013)
  • [6] A. Beveridge (Ed.), Forensic Investigations of Explosions (Taylor & Francis, London, 2003)
  • [7] T. Urbanski, Chemistry and Technology of Explosives (Pergamon Press, New York, 1964) vol. 2
  • [8] V.I. Gindich, L.V. Zabelin, G.N. Marchenko, Production of Cellulose Nitrates. Technology and Equipment (Central Research Institute of Scientific and Technical Information, Moscow, 1984) (in Russian)
  • [9] J.A. Pople, W.G. Schneider, H.J. Bernstein, High-Resolution Nuclear Magnetic Resonance (McGraw-Hill Book Company, New York 1959)
  • [10] V.M. Gun’ko et al., Adv. Colloid Interface Sci. 118, 125 (2005)
  • [11] V.M. Gun’ko, V.V. Turov, Nuclear Magnetic Resonance Studies of Interfacial Phenomena (CRC Press, Boca Raton, 2013) http://dx.doi.org/10.1201/b14202[Crossref]
  • [12] V.V. Turov et al., Colloids Surf. A: Physicochem. Eng. Aspects 390, 48 (2011) http://dx.doi.org/10.1016/j.colsurfa.2011.08.053[Crossref]
  • [13] V.M. Gun’ko et al., J. Colloid Interface Sci. 368, 263 (2012) http://dx.doi.org/10.1016/j.jcis.2011.11.018[Crossref]
  • [14] V.M. Gun’ko et al., Carbon 57, 191 (2013) http://dx.doi.org/10.1016/j.carbon.2013.01.063[Crossref]
  • [15] V.M. Gun’ko et al., Adsorption 19, 305 (2013) http://dx.doi.org/10.1007/s10450-012-9453-8[Crossref]
  • [16] Yu.E. Shapiro, Prog. Polymer Sci. 36, 1184 (2011) http://dx.doi.org/10.1016/j.progpolymsci.2011.04.002[Crossref]
  • [17] G.K. Buckee, J. Inst. Brew. 100, 57 (1994) http://dx.doi.org/10.1002/j.2050-0416.1994.tb00820.x[Crossref]
  • [18] V.P. Glushko (Ed.), Handbook of Thermodynamic Properties of Individual Substances (Nauka, Moscow, 1978) (in Russian)
  • [19] D.P. Gallegos, K. Munn, D.M. Smith, D.L. Stermer, J. Colloid Interface Sci. 119, 127 (1986) http://dx.doi.org/10.1016/0021-9797(87)90251-7[Crossref]
  • [20] J.H. Strange, M. Rahman, E.G. Smith, Phys. Rev. Lett. 71, 3589 (1993) http://dx.doi.org/10.1103/PhysRevLett.71.3589[Crossref]
  • [21] J. Mitchell, J.B.W. Webber, J.H. Strange, Physics Reports 461, 1 (2008) http://dx.doi.org/10.1016/j.physrep.2008.02.001[Crossref]
  • [22] O.V. Petrov, I. Furó, Prog. Nuclear Magn. Reson. Spectr. 54, 97 (2009) http://dx.doi.org/10.1016/j.pnmrs.2008.06.001[Crossref]
  • [23] M. J. Frisch et al, Gaussian 09, Revision D.01 (Gaussian, Inc., Wallingford CT, 2013)
  • [24] A. A. Granovsky, J. Chem. Phys. 134, 214113 (2011) http://dx.doi.org/10.1063/1.3596699[Crossref]
  • [25] A.V. Marenich, C.J. Cramer, D.G. Truhlar, J. Phys. Chem. B 113, 6378 (2009) http://dx.doi.org/10.1021/jp810292n[Crossref]
  • [26] J.J.P. Stewart, MOPAC 2012, Versions 13.234W and 13.234L (Stewart Computational Chemistry, Colorado Springs, CO, USA, 2013) http://openmopac.net/
  • [27] V.M. Gun’ko, J. Theor. Comput. Chem. 2, 1 (2013)
  • [28] I.P. Gragerov, V.K. Pogorelyi, I.F. Franchuk, The Hydrogen Bond and Fast Proton Exchange (Naukova Dumka, Kiev, 1978) (in Russian)
  • [29] R.P. Bell, Proton in Chemistry (Chapman and Holly, London, 1959)
  • [30] D. Grasso, J.C. Carrington, P. Chheda, B. Kim, Water Res. 29, 49 (1995) http://dx.doi.org/10.1016/0043-1354(94)E0107-H[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11532-013-0397-y
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.