Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 11 | 9 | 1456-1470

Article title

Spatial variations in the distribution of trace ionic impurities in the water-steam cycle in a thermal power plant based on a multivariate statistical approach

Content

Title variants

Languages of publication

EN

Abstracts

EN
Abstract In this study, a multivariate statistical approach was used to identify the key variables responsible for process water quality in a power plant. The ion species that could cause corrosion in one of the major thermal power plants (TPP) in Serbia were monitored. A suppressed ion chromatographic (IC) method for the determination of the target anions and cations at trace levels was applied. In addition, some metals important for corrosion, i.e., copper and iron, were also analysed by the graphite furnace atomic absorption spectrophotometric (GFAAS) method. The control parameters, i.e., pH, dissolved oxygen and silica, were measured on-line. The analysis of a series of representative samples from the TPP Nikola Tesla, collected in different plant operation modes, was performed. Every day laboratory and on-line analysis provides a large number of data in relation to the quality of water in the water-steam cycle (WSC) which should be evaluated and processed. The goal of this investigation was to apply multivariate statistical techniques and choose the most applicable technique for this case. Factor analysis (FA), especially principal component analysis (PCA) and cluster analysis (CA) were investigated. These methods were applied for the evaluation of the spatial/temporal variations of process water and for the estimation of 13 quality parameters which were monitored at 11 locations in the WSC in different working conditions during a twelve month period. It was concluded that PCA was the most useful method for identifying functional relations between the elements. After data reduction, four main factors controlling the variability were identified. Hierarchical cluster analysis (HCA) was applied for sample differentiation according to the sample location and working mode of the TPP. On the basis of this research, the new design of an optimal monitoring strategy for future analysis was proposed with a reduced number of measured parameters and with reduced frequency of their measurements. Graphical abstract [...]

Publisher

Journal

Year

Volume

11

Issue

9

Pages

1456-1470

Physical description

Dates

published
1 - 9 - 2013
online
29 - 6 - 2013

Contributors

  • Department of Analytical Chemistry and Quality Control, Faculty of Technology and Metallurgy, University of Belgrade, 11000, Belgrade, Serbia
  • Faculty of Civil Engineering, University of Belgrade, 11000, Belgrade, Serbia
  • Vinča Institute of Nuclear Sciences, University of Belgrade, 11001, Belgrade, Serbia
  • Department of Analytical Chemistry and Quality Control, Faculty of Technology and Metallurgy, University of Belgrade, 11000, Belgrade, Serbia

References

  • [1] E. Kaiser, J. Riviello, M. Rey, J. Statler, S. Heberling, J. Chromatogr. A 739, 71 (1996) http://dx.doi.org/10.1016/0021-9673(96)00315-9[Crossref]
  • [2] H. Lu, Sh. Mou, R. Deng, J. Riviello, Microchem. J. 64, 1 (2000) http://dx.doi.org/10.1016/S0026-265X(99)00014-4[Crossref]
  • [3] E. Santoyo, S.P. Verma, F. Sandoval, A. Aparicio, R. Garcia, J. Chromatogr. A 949, 281 (2002) http://dx.doi.org/10.1016/S0021-9673(01)01586-2[Crossref]
  • [4] Z. Lu, Y. Liu, V. Barreto, C. Pohl, N. Avdalovic, R. Joyce, B. Newton, J. Chromatogr. A 956, 129 (2002) http://dx.doi.org/10.1016/S0021-9673(02)00143-7[Crossref]
  • [5] P. Miskaki, E. Lytras, L. Kousouris, P. Tzoumerkas, Desalination 213, 182 (2007) http://dx.doi.org/10.1016/j.desal.2006.05.063[Crossref]
  • [6] C. Lopez-Moreno, I. Viera, A.M. Urbano, Desalination 261, 111 (2010) http://dx.doi.org/10.1016/j.desal.2010.05.022[Crossref]
  • [7] H. Huang, G.A. Sorial, Chemosphere 64, 1150 (2006) http://dx.doi.org/10.1016/j.chemosphere.2005.11.044[Crossref]
  • [8] R. Wang, N. Wang, M. Ye, Y. Zhu, J. Chromatogr. A 1265, 186 (2012) http://dx.doi.org/10.1016/j.chroma.2012.09.086[Crossref]
  • [9] H. Kaasalainena, A. Stefansson, Talanta 85, 1897 (2011) http://dx.doi.org/10.1016/j.talanta.2011.07.024[Crossref]
  • [10] D.Z. Čičkarić, I. Deršek-Timotić, A. Onjia, Lj. Rajaković, J. Serb. Chem. Soc. 70, 995 (2005) http://dx.doi.org/10.2298/JSC0507995C[Crossref]
  • [11] D.Z. Živojinović, Lj.V. Rajaković, Desalination 275, 17 (2011) http://dx.doi.org/10.1016/j.desal.2011.02.058[Crossref]
  • [12] Pressurized Water Reactors Secondary Water Chemistry Guidelines, Revision 6 (EPRI Report 1008224), December, 2004
  • [13] V.N. Rajakovic-Ognjanovic, D.Z. Zivojinovic, B.N. Grgur, Lj.V. Rajakovic, Appl. Therm. Eng. 31, 119 (2011) http://dx.doi.org/10.1016/j.applthermaleng.2010.08.028[Crossref]
  • [14] K.R. Cooper, R.G. Kelly, J. Chromatogr. A 739, 183 (1996) http://dx.doi.org/10.1016/0021-9673(96)00033-7[Crossref]
  • [15] D.H. Thomas, M. Rey, P.E. Jackson, J. Chromatogr. A 956, 181 (2002) http://dx.doi.org/10.1016/S0021-9673(02)00141-3[Crossref]
  • [16] B. De Borba, M. Laikhtman, J. Rohrer, J. Chromatogr. A 995, 143 (2003) http://dx.doi.org/10.1016/S0021-9673(03)00491-6[Crossref]
  • [17] D. Čičkarić, J. Marković, Lj. Rajaković, Water Qual. 2, 14 (2004)
  • [18] Lj. V. Rajaković, V. Šijački-Žeravčić, P. Stefanović, et al., Corrosion potential of water: Book 2 (Codex, Belgrade, 2002)
  • [19] Lj.V. Rajaković, J. Kerečki, Hem. Ind. 57, 318 (2003) http://dx.doi.org/10.2298/HEMIND0308318R[Crossref]
  • [20] D. A. Lytle, M. N. Nadagouda, Corros. Sci. 52, 1927 (2010) http://dx.doi.org/10.1016/j.corsci.2010.02.013[Crossref]
  • [21] M. Varol, B. Gokot, A. Bekleyen, B. Sen, Catena 92, 11 (2012) http://dx.doi.org/10.1016/j.catena.2011.11.013[Crossref]
  • [22] M. Cieszynska, M. Wesolowski, M. Bartoszewicz, M. Michalska, Cent. Eur. J. Chem. 9, 265 (2011) http://dx.doi.org/10.2478/s11532-011-0004-z[Crossref]
  • [23] F. Huang, X. Wang, L. Lou, Z. Zhou, J. Wu, Water Res. 44, 1562 (2010) http://dx.doi.org/10.1016/j.watres.2009.11.003[Crossref]
  • [24] N. Ruggieri, M. Castellano, M. Capello, S. Maggi, P. Povero, Mar. Pollut. Bull. 62, 340 (2011) http://dx.doi.org/10.1016/j.marpolbul.2010.10.006[Crossref]
  • [25] A. Astel, M. Biziuk, A. Przyjazny, J. Namiesnik, Water Res. 40, 1706 (2006) http://dx.doi.org/10.1016/j.watres.2006.02.018[Crossref]
  • [26] I. Stanimirova, M. Połowniak, R. Skorek, A. Kita, E. John, F. Buhl, B. Walczak, Talanta 74, 153 (2007) http://dx.doi.org/10.1016/j.talanta.2007.05.044[Crossref]
  • [27] R. Slingsby, R. Kiser, Trends Anal. Chem. 20, 288 (2001) http://dx.doi.org/10.1016/S0165-9936(01)00069-3[Crossref]
  • [28] E. Gómez-Ordónez, E. Alonso, P. Rupérez, Talanta 82, 1313 (2010) http://dx.doi.org/10.1016/j.talanta.2010.06.062[Crossref]
  • [29] W.W. Buchberger, Trends Anal. Chem. 20, 296 (2001) http://dx.doi.org/10.1016/S0165-9936(01)00068-1[Crossref]
  • [30] Standard Methods for the Examination of Water & Wastewater: Centennial Edition, 21st Edition (American Public Health Association, Washington, 2005)
  • [31] P. Raj Kannel, S. Lee, S. Raj Kanel, S. Pratap Khan, Anal. Chim. Acta 582, 390 (2007) http://dx.doi.org/10.1016/j.aca.2006.09.006[Crossref]
  • [32] Y. Ouyang, Water Res. 39, 2621 (2005) http://dx.doi.org/10.1016/j.watres.2005.04.024[Crossref]
  • [33] V. Simeonov, J.A. Stratis, C. Samara, G. Zachariadis, D. Voutsa, A. Anthemidis, et al., Water Res. 37, 4119 (2003) http://dx.doi.org/10.1016/S0043-1354(03)00398-1[Crossref]
  • [34] T. Kowalkowski, R. Zbytniewski, J. Szpejna, B. Buszewski, Water Res. 40, 744 (2006) http://dx.doi.org/10.1016/j.watres.2005.11.042[Crossref]
  • [35] E. Marengo M.C. Gennaro, E. Robotti, A. Maiocchi, G. Pavese, A. Indaco, A. Rainero, Microchem. J 88, 167 (2008) http://dx.doi.org/10.1016/j.microc.2007.11.011[Crossref]
  • [36] S. Razic, A. Onjia, S. Ðogo, L. Slavkovic, A. Popovic, Talanta 67, 233 (2005) http://dx.doi.org/10.1016/j.talanta.2005.03.023[Crossref]
  • [37] B. Skrbic, A. Onjia, Food Control 18, 338 (2007) http://dx.doi.org/10.1016/j.foodcont.2005.10.017[Crossref]
  • [38] K. Hron, M. Jelinkova, P. Filzmoser, R. Kreuziger, P. Bednar, P. Bartak, Talanta 90, 46 (2012) http://dx.doi.org/10.1016/j.talanta.2011.12.060[Crossref]
  • [39] A. Przybylowicz, P. Chesy, M. Herman, A. Parczewski, S. Walas, W. Piekoszewski, Cent. Eur. J. Chem. 10(5), 1590 (2012) http://dx.doi.org/10.2478/s11532-012-0089-z[Crossref]
  • [40] G. Ragno, M. De Luca, G. Ioele, Microchem. J 87, 119 (2007) http://dx.doi.org/10.1016/j.microc.2007.06.003[Crossref]
  • [41] S. Shrestha, F. Kazama, Environ. Modell. Softw 22, 464 (2007) http://dx.doi.org/10.1016/j.envsoft.2006.02.001[Crossref]
  • [42] P.M.S.M. Rodrigues, R. M.M. Rodrigues, B.H.F. Costa, A.A.L. Tavares Martins, J.C.G. Esteves da Silva, Chemometr Intell Lab. 102, 130 (2010) http://dx.doi.org/10.1016/j.chemolab.2010.04.014[Crossref]
  • [43] F. Grubbs, Technometrics 11(1), 1 (1969) http://dx.doi.org/10.1080/00401706.1969.10490657[Crossref]
  • [44] H. Kaiser, Educ. Psychol. Meas. 20, 141 (1960) http://dx.doi.org/10.1177/001316446002000116[Crossref]
  • [45] M.S. Bartlett, Journal off the Royal Statistical Society 16(Series B), 296 (1954)
  • [46] B.F.J. Manly, Multivariate Statistical Methods: A Primer, 3rd edition (Chapman and Hall/CRC, New York, 2005) 75–90

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11532-013-0286-4
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.