Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2011 | 9 | 2 | 348-351

Article title

Surface properties of yeast cells during heavy metal biosorption

Content

Title variants

Languages of publication

EN

Abstracts

EN
Properties of metal solution, environmental conditions and the type of biomaterials (microorganism genus, species or even strain) influence the mechanism of metal biosorption and consequently metal adsorption capacity, affinity and specificity. Cell surface properties determine the metal-microorganism interactions to a large extent. In this work the relationship between yeast surface properties and yeast’s ability to bind cadmium, lead and copper was studied. Surface charge and hydrophobicity before and after biosorption were determined using dye retention and solvent partition assays, respectively. There were differences in the surface charge and relative hydrophobicity among different yeast strains. A higher metal adsorption capacity for more negatively charged yeast cells was observed. Biosorption of heavy metals resulted in modifications to the surface charge and hydrophobicity of yeast cells. However, there were not statistically significant changes in the yeast surface charge and hydrophobicity after binding of heavy metals depending on the nature of the metal, initial metal concentration and solution pH.

Publisher

Journal

Year

Volume

9

Issue

2

Pages

348-351

Physical description

Dates

published
1 - 4 - 2011
online
17 - 2 - 2011

Contributors

  • Technical University of Lodz

References

  • [1] J.L. Wang, C. Chen, Biotechnol. Adv. 27, 195 (2009) http://dx.doi.org/10.1016/j.biotechadv.2008.11.002[Crossref]
  • [2] S.S. Ahluwalia, D. Goyal, Bioresource Technol. 98, 2243 (2007) http://dx.doi.org/10.1016/j.biortech.2005.12.006[Crossref]
  • [3] J.L. Wang, C. Chen, Biotechnol. Adv. 24, 427 (2006) http://dx.doi.org/10.1016/j.biotechadv.2006.03.001[Crossref]
  • [4] D.E. Amory, P.G. Rouxhet, Biochim. Biophys. Acta 938, 61 (1988) http://dx.doi.org/10.1016/0005-2736(88)90122-8[Crossref]
  • [5] P.B. Dengis, P.G. Rouxhet, Yeast 13, 931 (1997) http://dx.doi.org/10.1002/(SICI)1097-0061(199708)13:10<931::AID-YEA149>3.0.CO;2-T[Crossref]
  • [6] K. Fukudome, M. Sato, Y. Takata, H. Kuroda, J. Watari, M. Takashio, J. Am. Soc. Brew. Chem. 60, 149 (2002)
  • [7] C.D. Powell, D.E. Quain, K.A. Smart, FEMS Yeast Research 3, 149 (2003) http://dx.doi.org/10.1016/S1567-1356(03)00002-3[Crossref]
  • [8] J. Laurent, M. Casellas, C. Dagot, J. Hazard. Mater. 162, 652 (2009) http://dx.doi.org/10.1016/j.jhazmat.2008.05.066[Crossref]
  • [9] B. Antizar-Ladislao, N.I. Galil, Water Res. 38, 267 (2004) http://dx.doi.org/10.1016/j.watres.2003.09.032[Crossref]
  • [10] Y.E. Collins, G. Stotzky, Appl. Environ. Microbiol. 58, 1592 (1992) [PubMed]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11532-011-0008-8
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.