EN
The electronic absorption spectra of 29 phenyl-ring substituted chalcones have been investigated with the time-dependent density functional theory (TD-DFT) and polarizable continuum TD-DFT (PCM-TD-DFT). It turns out that the hybrid PBE1PBE functional with the 6-31G basis set provide reliable λmax when the solvent effects are included in the model. Comparisons with experimental values lead to a mean absolute error of 12 nm (0.136 eV). Moreover, the observed substituent effects are reproduced by calculation qualitatively. The λmax of substituted chalcone in phenyl ring A is less sensitive to substitution than that in ring B. The linear correlation of Hammett’s substituent constants (σP) with LUMO energies is better with respect to HOMO energies. The calculation reveals that the maximum absorption band mainly results from the π→π* transition from HOMO to LUMO. The analysis of the electron density plots of frontier molecular orbitals show that most transitions should be of valence excitation nature. [...]