Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2010 | 8 | 1 | 70-76

Article title

Ionisation potential and electron affinity of free 5′,8-cyclopurine-2′-deoxynucleosides. DFT study in gaseous and aqueous phase

Content

Title variants

Languages of publication

EN

Abstracts

EN
Oxidatively generated damage to DNA frequently appears in the human genome as an effect of aerobic metabolism or as the result of exposure to exogenous oxidizing agents. Due to these facts it was decided to present, for the first time, the electron affinity, ionization potential of 5′,8-cyclo-2′-deoxyadenosine/guanosine (cdA, cdG) in their 5′R and 5′S diastereomeric forms. For all points of quantum mechanics studies presented, the density functional theory (DFT) with B3LYP parameters on 6-311++G** basis set level was used. The zero-point vibrational corrected adiabatic electron affinity (AEA) and adiabatic ionization potential (AIP) were calculated. Additionally the vertical electron affinity (VEA), vertical detachment energy (VDE) and vertical ionization potential were taken into consideration. AEA in eV (gaseous/aqueous phase) are as follows: 0.3/1.81 (5′R)cdA, 0.13/1.76 (5′S)cdA, 0.17/1.49 (5′R)cdG, 0.14/1.53 (5′S)cdG and AIP followed the order 7.43/5.59(5′S)cdG, 7.49/5.60(5′R)cdG, 7.77/5.97(5′R)cdA, 7.84/5.93(5′S)cdA. The obtained AIPs were found to be lower than that for corresponding natural nucleosides. Therefore, even though the 5′,8-cyclopurine-2′-deoxynucleoside level in a cell was judged as low, they can play an important role in the stability, replication and transcription of genes. [...]

Publisher

Journal

Year

Volume

8

Issue

1

Pages

70-76

Physical description

Dates

published
1 - 2 - 2010
online
16 - 2 - 2010

Contributors

  • Department of Biopharmacy, Medical University of Lodz, 90-151, Łodz, Poland

References

  • [1] J. Cadet, P. Vigny, In: H. Morrison (Ed.), Bioorganic Photochemistry (Wiley, New York, 1990)
  • [2] J. Cadet, T. Douki, J.-L. Ravanat, In: J. Fuchs, M. Podda, L. Packer (Eds.), Redox-genome interactions in health and disease (Marcel Dekker Inc, New York, 2003)
  • [3] J. Cadet, T. Douki, D. Gasparutto, J-L. Ravanat, Mutat. Res. 5, 531 (2003)
  • [4] M.S. Cooke, M.D. Evans, M. Dizdaroglu, J. Lunec, FASEB J. 17, 1195 (2003) http://dx.doi.org/10.1096/fj.02-0752rev[Crossref]
  • [5] M.K. Shukla, J. Leszczynski, J. Biomol. Struct. Dynam. 25, 93 (2007) [Crossref]
  • [6] A. Sancar, L.A. Lindsey-Boltz, K. Ünsal-Kaçmaz, S. Linn, Annu. Rev. Biochem. 73, 39 (2004) http://dx.doi.org/10.1146/annurev.biochem.73.011303.073723[Crossref]
  • [7] P.J. Brooks, DNA Repair 7, 1168 (2008) http://dx.doi.org/10.1016/j.dnarep.2008.03.016[Crossref]
  • [8] P. Jaruga, M. Dizdaroglu, DNA Repair 7, 1413 (2008) http://dx.doi.org/10.1016/j.dnarep.2008.06.005[Crossref]
  • [9] A. Sancar, J.T. Reardon, In: W. Yang (Ed.), Advances in Protein Chemistry (Elsevier Academic Press, New York, 2004) 69
  • [10] K. Renderath, G-D. Zhou, R.L. Somers, J.H. Robbins, P.J. Brooks, J. Biol. Chem. 276, 36051 (2001) and references therein http://dx.doi.org/10.1074/jbc.M105472200[Crossref]
  • [11] K. Miaskiewicz, J.H. Miller, A.F. Fuciarelli, Nucleic Acids Res. 23, 515 (1995) http://dx.doi.org/10.1093/nar/23.3.515[Crossref]
  • [12] P. Hobza, J. Šponer, Chem. Rev. 99, 3247 (1999) http://dx.doi.org/10.1021/cr9800255[Crossref]
  • [13] K. Keck, Z. Naturforsch B 23, 1034 (1968)
  • [14] H.P.C. Hogenkamp, J.Biol. Chem. 238, 477 (1962)
  • [15] J. Cadet, T. Douki, D. Gasparutto, J-L. Ravanat, Rad. Phys. Chem. 72, 293 (2005) http://dx.doi.org/10.1016/j.radphyschem.2003.12.059[Crossref]
  • [16] P. Jaruga, M. Birincioglu, H. Rodriguez, M. Dizdaroglu, Biochemistry 41, 3703 (2002) http://dx.doi.org/10.1021/bi016004d[Crossref]
  • [17] M. Dizdaroglu, P. Jaruga, H. Rodriguez, Free Radical Biol. Med. 30, 774 (2001) http://dx.doi.org/10.1016/S0891-5849(01)00464-6[Crossref]
  • [18] E.E. Schroder, J.C. Budzinski, J. D. Wallace, J.D. Zimbrick, H. C. Box, Int. J. Radiat. Biol. 68, 509 (1995) http://dx.doi.org/10.1080/09553009514551501[Crossref]
  • [19] M.-L. Dirksen, W.F. Brakely, E. Holwitt, M. Dizdaroglu, Int. J. Radiat. Biol. 54, 195 (1988) http://dx.doi.org/10.1080/09553008814551631[Crossref]
  • [20] B.J. Brooks, Neuroscience 145, 1407 (2007) http://dx.doi.org/10.1016/j.neuroscience.2006.10.025[Crossref]
  • [21] I. Kuraoka et al., J. Biol. Chem. 276, 49283 (2001) http://dx.doi.org/10.1074/jbc.M107779200[Crossref]
  • [22] F. Altieri, C. Grillo, M. Maceroni, S. Chicharelli, Antioxid. Redox Signal 10, 891 (2008) http://dx.doi.org/10.1089/ars.2007.1830[Crossref]
  • [23] D. Gasparutto, A.G. Bourdat, C. D’Ham, V. Durate, J. Cadet, Biochimie 82, 19 (2000) http://dx.doi.org/10.1016/S0300-9084(00)00347-3[Crossref]
  • [24] W.J. Hehre, L. Radom, P. Schleyer, R.J.A. Pople, Ab Initio Molecular Orbital Theory (Wiley, New York, 1986)
  • [25] R. Krishnan, H.B. Schlegel, J.A. Pople, J.Chem. Phys. 72, 4654 (1980) http://dx.doi.org/10.1063/1.439708[Crossref]
  • [26] L.T. Nguyen, T.N. Le, M.T. Nguyen, J. Chem. Soc., Faraday Trans. 94, 3541 (1998) http://dx.doi.org/10.1039/a806630b[Crossref]
  • [27] S. Miertus, J. Tomasi, Chem. Phys. 65, 239 (1982) http://dx.doi.org/10.1016/0301-0104(82)85072-6[Crossref]
  • [28] F.A. Evangelista, A. Paul, H.F. Schaefer III, J. Phys. Chem. A 108, 3566 (2004)
  • [29] J.B. Foresman, A. Frisch, Exploring Chemistry with Electronic Structure Method, 2nd edition (Gaussian, Inc. Pittsburgh, PA, 1996)
  • [30] M.J. Frischet et al., Gaussian 03W, Revision D.01 (Gaussian, Inc., Wallingford CT, USA, 2004)
  • [31] B. Giese, A. Biland, Chem. Commun. 667 (2002) [Crossref]
  • [32] B. Armitage, Chem. Rev. 98, 1171 (1998) http://dx.doi.org/10.1021/cr960428+[Crossref]
  • [33] C.J. Burrows, J.G. Muller, Chem. Rev. 98, 1109 (1998) http://dx.doi.org/10.1021/cr960421s[Crossref]
  • [34] A.K. Ghosh, G.B. Schuster, J. Am. Chem. Soc. 128, 4172 (2006) http://dx.doi.org/10.1021/ja0573763[Crossref]
  • [35] M.K. Shukla, J. Leszczynski, In: J. Sponer, F. Lankas (Eds.), Computational Studies of RNA and DNA (Springer, New York, 2006)
  • [36] N. Russo, M. Toscano, A. Grand, J. Comput. Chem. 21, 1243 (2000) http://dx.doi.org/10.1002/1096-987X(20001115)21:14<1243::AID-JCC3>3.0.CO;2-M[Crossref]
  • [37] S.D. Wetmore, R.J. Boyd, L.A. Eriksson, Chem. Phys. Lett. 322, 129 (2000) http://dx.doi.org/10.1016/S0009-2614(00)00391-2[Crossref]
  • [38] X. Yang, X-B. Wang, E.R. Vorpagel, L-S. Wang, Proc. Natl. Acad. Sci. USA. 101, 17588 (2004) http://dx.doi.org/10.1073/pnas.0405157101[Crossref]
  • [39] J. Cadet et al., Nuc. Instr. Meth. Phys. Res B. 151, 1 (1999) http://dx.doi.org/10.1016/S0168-583X(99)00117-2[Crossref]
  • [40] V. Gomzi, J.N. Herak, J. Mol. Struct. (Theochem) 683, 155 (2004) http://dx.doi.org/10.1016/j.theochem.2004.07.005[Crossref]
  • [41] J. Bernas, D. Grand, E. Amouyal, J. Phys. Chem. 84, 1259 (1980) http://dx.doi.org/10.1021/j100447a039[Crossref]
  • [42] C. Dherin, D. Gasparutto, T.R. O’Connor, J. Cadet, S. Bpitex, Int. J. Radiat. Biol. 80, 21 (2004) http://dx.doi.org/10.1080/09553000310001632976[Crossref]
  • [43] M.V. Orlov, A.N. Smirnov, Y.M. Varshavsky, Tetrahedron. Lett. 48, 4377 (1976) http://dx.doi.org/10.1016/0040-4039(76)80120-7[Crossref]
  • [44] A.O. Alyoubi, R.H. Hilal, Biophys. Chem. 55, 231 (1995) http://dx.doi.org/10.1016/0301-4622(95)00002-F[Crossref]
  • [45] A. Ghosh, A. Joy, G.B. Shuster, T. Douki, J. Cadet, Org. Biomol. Chem. 6, 916 (2008) http://dx.doi.org/10.1039/b717437c[Crossref]
  • [46] R.N. Barnett, C.L. Cleveland, U. Landman, E. Boone, S. Kanvah, G.B. Schuster, J. Phys. Chem. A 107, 3525 (2003) http://dx.doi.org/10.1021/jp022211r[Crossref]
  • [47] T. Takada, K. Kawai, M. Fujitsuka, T. Majima, Proc. Natl. Acad. Sci. USA. 101, 14002 (2004) http://dx.doi.org/10.1073/pnas.0402756101[Crossref]
  • [48] K. Kawai, T. Takada, S. Tojo, T. Majima, J. Am. Chem. Soc. 125, 6842 (2003) http://dx.doi.org/10.1021/ja034953j[Crossref]
  • [49] K. Kawai, T. Takada, S. Tojo, T. Majima, J. Am. Chem. Soc. 126, 1125 (2004) http://dx.doi.org/10.1021/ja035730w[Crossref]
  • [50] T. Takada, K. Kawai, M. Fujitsuka, T. Majima, J. Am. Chem. Soc. 128, 11012 (2006) http://dx.doi.org/10.1021/ja0641554[Crossref]
  • [51] B. Giese, Curr. Opin.Chem. Biol. 6, 612 (2002) http://dx.doi.org/10.1016/S1367-5931(02)00364-2[Crossref]
  • [52] B. Giese, Acc. Chem. Res. 33, 631 (2000) http://dx.doi.org/10.1021/ar990040b[Crossref]
  • [53] A.N. Rihardson, J. Gu, S. Wang, Y. Xie, H.F. Schaefer III, J. Am. Chem. Soc. 126, 4404 (2004) http://dx.doi.org/10.1021/ja030487m[Crossref]
  • [54] J.R. Wiley, J.M. Robinson, S. Ehdaie, E.C.M. Chen, E.S.D. Chen, W.E. Wentworth, Biochem. Biophys. Res. Comm. 180, 841 (1991) http://dx.doi.org/10.1016/S0006-291X(05)81141-6[Crossref]
  • [55] C. Desfrancosi, H. Abdoul-Carime, J.P. Scherman, J. Chem. Phys. 104, 7792 (1996) http://dx.doi.org/10.1063/1.471484[Crossref]
  • [56] J.C. Rienstra-Kiracofe, G.S. Tschumper, H.F. Schaefer III, S. Nandi, G.B. Ellison, Chem. Rev. 102, 231 (2002) http://dx.doi.org/10.1021/cr990044u[Crossref]
  • [57] B. Karwowski, J.Mol. Struc. - Theochem (in press)
  • [58] N.A. Oyler, L. Adamowicz, J. Phys. Chem. 97, 11122 (1993) http://dx.doi.org/10.1021/j100144a037[Crossref]
  • [59] P. Sarmah, R.C. Deka, Mol. Simulat. 34, 879 (2008) http://dx.doi.org/10.1080/08927020802235664[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11532-009-0105-0
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.