EN
Montmorillonies separated from the bentonites SAz-1 (Cheto, AZ, USA), and Cressfield (New South Wales, Australia) were used as starting materials. Reduced charge montmorillonites (RCMs) were prepared from these chemically different and Li-saturated montmorillonites via heating at temperatures in the range of 120–300°C. The residual exchangeable Li+ cations were then replaced with tetramethylammonium (TMA+) or hexadecyltrimethylammonium (HDTMA+) cations and the ability of the modified montmorillonites to adsorb biphenyl was investigated. Lower adsorption was observed for Li-montmorillonites than for the organoclays. The extent of adsorption was dependent on both the layer charge of montmorillonite and the size of alkylammonium cations. HDTMA-forms prepared from unheated Li-montmorillonites adsorbed biphenyl better than the organoclays prepared from RCMs. In contrast, the TMA-samples prepared from the Li-montmorillonites that were not heated showed low uptake of biphenyl probably due to high content of TMA+ cations. Reduction of the layer charge, resulting in lower content of TMA+ cations, increased sorption efficiency of both TMA-montmorillonites. The best adsorbents of biphenyl were HDTMA-SAz-1 prepared from the unheated Li-SAz-1 and TMA-Cressfield prepared from the Li-form heated at 180°C. These samples removed about 80% of biphenyl from its aqueous solutions [...]