Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2007 | 5 | 2 | 396-419

Article title

A theoretical investigation on the isomerism and the NMR properties of thiosemicarbazones

Content

Title variants

Languages of publication

EN

Abstracts

EN
Hybrid density functional theory calculations at the mPW1PW91/6-31+G(d,p) level of theory have been used to investigate the optimized structures and other molecular properties of five different series of thiosemicarbazones. The investigated compounds were obtained from acenaphthenequinone, isatin and its derivatives, and alloxan. The focus of the study is the isomerism and the NMR characterization of these thiosemicarbazones. It was found that only one isomer is expected for thiosemicarbazones and methylthiosemicarbazones, while for dimethylthiosemicarbazones, two isomers are possible. All investigated thiosemicarbazones exhibit a hydrazinic proton that is highly deshielded and resonates far downfield in the proton NMR spectra. This proton is a part of a characteristic sixmembered ring, and its NMR properties are a result of its strong, intermolecular hydrogen bond. The relationships between the calculated 1H and 13C NMR chemical shifts and various geometric parameters are reported. [...]

Publisher

Journal

Year

Volume

5

Issue

2

Pages

396-419

Physical description

Dates

published
1 - 6 - 2007
online
2 - 2 - 2007

Contributors

  • Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee, 38505, USA
author
  • Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee, 38505, USA

References

  • [1] J.P. Scovill, D.L. Klayman and C.F. Franchino: “2-Acetylpyridine thiosemicarbazones. 4. Complexes with transition metals as antimalarial and antileukemic agents”, J. Med. Chem., Vol. 25, (1982), pp. 1261–1264. http://dx.doi.org/10.1021/jm00352a036[Crossref]
  • [2] S. Padhye and G.B. Kauffman: “Transition metal complexes of semicarbazones and thiosemicarbazones”, Coord. Chem. Rev., Vol. 63, (1985), pp. 127–160. http://dx.doi.org/10.1016/0010-8545(85)80022-9[Crossref]
  • [3] D.X. West, S.B. Padhye and P.B. Sonawane: “Structural and physical correlations in the biological properties of transition metal heterocyclic thiosemicarbazone and S-alkyl dithiocarbazate complexes”, Struct. Bonding, Vol. 76, (1991), pp. 1–50.
  • [4] D.X. West, A.E. Liberta, S.B. Padhye, R.C. Chikate, P.B. Sonawane, A.S. Kumbhar and R.G. Yerande: “Thiosemicarbazone complexes of copper(II): structural and biological studies”, Coord. Chem. Rev., Vol. 123, (1993), pp. 49–71. http://dx.doi.org/10.1016/0010-8545(93)85052-6[Crossref]
  • [5] T. Varadinova, D. Kovala-Demertzi, M. Rupelieva, M. Demertzis and P. Genova: “Antiviral activity of platinum (II) and palladium (II) complexes of pyridine-2-carbaldehyde thiosemicarbazone, Acta Virol., Vol. 45, (2001), pp. 87–94.
  • [6] D. Kovala-Demertzi, M.A. Demertzis, J.R. Miller, C. Papadopoulou, C. Dodorou and G. Filousis: “Platinum(II) complexes with 2-acetylpyridine thiosemicarbazone. Synthesis, crystal structure, spectral properties, antimicrobial and antitumour activity”, J. Inorg. Biochem., Vol. 86, (2001), pp. 555–563. http://dx.doi.org/10.1016/S0162-0134(01)00224-0[Crossref]
  • [7] A.R. Cowley, J.R. Dilworth, P.S. Donnelly, E. Labisbal and A. Sousa: “An Unusual Dimeric Structure of a Cu(I) Bis(thiosemicarbazone) Complex: Implications for the Mechanism of Hypoxic Selectivity of the Cu(II) Derivatives”, J. Am. Chem. Soc., Vol. 124, (2002), pp. 5270–5271. http://dx.doi.org/10.1021/ja012668z[Crossref]
  • [8] J.S. Lewis, D.W. McCarthy, T.J. McCarthy, Y. Fujibayashi and M.J. Welch: Evaluation of 64Cu-ATSM in vitro and in vivo in a hypoxic tumor model, J. Nucl. Med., Vol. 40, (1999), pp. 177–183.
  • [9] N. Takahashi, Y. Fujibayashi, Y. Yonekura, M.J. Welch, A. Waki, T. Tsuchida, N. Sadato, K. Sugimoto and H. Itoh: “Evaluation of 62Cu labeled diacetyl-bis(N4-methylthiosemicarbazone) as a hypoxic tissue tracer in patients with lung cancer”, Ann. Nucl. Med., Vol. 14, (2000), pp. 323–328. [Crossref]
  • [10] ANQ-TSC = acenaphthene-1,2-dione 2-thiosemicarbazone, ANQ-MTSC = acenaphthene-1,2-dione 2-(N-methylthiosemicarbazone), ANQ-DMTSC = acenaphthene-1,2-dione 2-(N, N-dimethylthiosemicarbazone), I-TSC = 1H-indole-2,3-dione 3-thiosemicarbazone, I-MTSC = 1H-indole-2,3-dione 3-(N-methylthiosemicarbazone), I-DMTSC = 1H-indole-2,3-dione 3-(N, N-dimethylthiosemicarbazone), MI-TSC = 1-methylindole-2,3-dione 3-thiosemicarbazone, MI-MTSC = 1-methylindole-2,3-dione 3-(Nmethylthiosemicarbazone), MI-DMTSC = 1-methylindole-2,3-dione 3-(N, N-dimethylthiosemicarbazone), IS-TSC = 1H-indole-2,3-dione-5-sulphonate 3-thiosemicarbazone, IS-MTSC = 1H-indole-2,3-dione-5-sulphonate 3-(N-methylthiosemicarbazone), IS-DMTSC = 1H-indole-2,3-dione-5-sulphonate 3-(N, N-dimethylthiosemicarbazone), ALL-TSC = pyrimidine-2,4,5,6(1H,3H)-tetrone 5-thiosemicarbazone, ALL-MTSC = pyrimidine-2,4,5,6(1H,3H)-tetrone 5-(Nmethylthiosemicarbazone), ALL-DMTSC = pyrimidine-2,4,5,6(1H,3H)-tetrone 5-(N, N-dimethylthiosemicarbazone).
  • [11] J.W. Carter, R. Mayes, K.A. Pierce, R. Lawson and E.C. Lisic: “Structural determination of a series of ortho-quinone thiosemicarbazone compounds using NMR spectroscopy”, J. Und. Chem. Res., Vol. 2, (2003), pp. 73–77.
  • [12] T. Bell, R. Mayes, R. Lawson and E.C. Lisic: “Synthesis of a series of isatin-3-thiosemicarbazone-5-sulfonic acid compounds and structural characterization using NMR spectroscopy”, J. Und. Chem. Res., Vol. 3, (2004), pp. 39–45.
  • [13] H. Yamamoto, Y. Uchigata, H. Okamoto: “DNA strand breaks in pancreatic islets by in vivo administration of alloxan or streptozotocin”, Biochem. Biophys. Res. Commun., Vol. 103, (1981), pp. 1014–1020. http://dx.doi.org/10.1016/0006-291X(81)90910-4[Crossref]
  • [14] H. Okamoto: “Molecular basis of experimental diabetes: degeneration, oncogenesis and regeneration of pancreatic B-cells of islets of Langerhans”, Bio Essays, Vol. 2, (1985), pp. 15–21.
  • [15] N. Takasu, T. Asawa, I. Komiya, Y. Nagasawa and T. Yamada: “Alloxan-induced DNA strand breaks in pancreatic islets. Evidence for hydrogen peroxide as an intermediate”, J. Biol. Chem., Vol. 266, (1991), pp. 2112–2114.
  • [16] J.D. Douros Jr., M. Brokl and A.F. Kerst (Gates Rubber Co.): US 3773952, 1973.
  • [17] E.C. Lisic, R.R. Nareddy, R. Huxford and E.C. Lisic: “Synthesis of a series of isatin-3-thiosemicarbazone-5-sulfonic acid compounds and structural characterization using NMR spectroscopy”, J. Und. Chem. Res., Vol. 5, (2006), pp. 61–66.
  • [18] S.N. Pandeya, S. Smitha, M. Jyoti and S.K. Sridhar: “Biological activities of isatin and its derivatives”, Acta Pharm., Vol. 55, (2005), pp. 27–46.
  • [19] D.J. Bauer: “Clinical experience with the antiviral drug marboran (1-methylisatin 3-thiosemicarbazone), Ann. NY Acad. Sci., Vol. 130, (1965), pp. 110–117. http://dx.doi.org/10.1111/j.1749-6632.1965.tb12545.x[Crossref]
  • [20] D.J. Bauer: “The antiviral and synergistic actions of isatin thiosemicarbazone and certain phenoxypyrimidines in vaccinia infection in mice, Br. J. Exp. Pathol., Vol. 36, (1955), pp. 105–114.
  • [21] P.W. Sadler: “Antiviral chemotherapy with isatin b-thiosemicarbazone and its derivatives, Ann. NY Acad. Sci., Vol. 130, (1965), pp. 71–79. http://dx.doi.org/10.1111/j.1749-6632.1965.tb12541.x[Crossref]
  • [22] S.N. Pandeya and J.R. Dimmock: “Recent evaluations of thiosemicarbazones and semicarbazones and related compounds for antineoplastic and anticonvulsant activities, Pharmazie, Vol. 48, (1993), pp. 659–666.
  • [23] R.L. Thompson, S.A. Minton Jr., J.E. Officer and G.H. Hitchings: “Effect of heterocyclic and other thiosemicarbazones on vaccinia infection in the mouse, J. Immunol., Vol. 70, (1953), pp. 229–234.
  • [24] G.A. Bain, D.X. West, J. Krejci, J. Valdes-Martinez, S. Hernandez-Ortega and R.A. Toscano: “Synthetic and spectroscopic investigations of N(4)-substituted isatin thiosemicarbazones and their copper(II) complexes, Polyhedron, Vol. 16, (1997), pp. 855–862. http://dx.doi.org/10.1016/S0277-5387(96)00323-3[Crossref]
  • [25] D.X. West, A.K. El-Sawaf and G.A. Bain: “Metal complexes of N(4)-substituted analogs of the antiviral drug methisazone 1-methylisatin thiosemicarbazone, Transit. Metal Chem., Vol. 23, (1998), pp. 1–6. http://dx.doi.org/10.1023/A:1006901328527[Crossref]
  • [26] D.J. Bauer and P. W. Sadler: “Structure-activity relations of the antiviral chemotherapeutic activity of isatin b-thiosemicarbazone, Br. J. Pharmacol. and Chemoth., Vol. 15, (1960), pp. 101–110.
  • [27] H. Stuenzi: “Copper complexation by isatin b-thiosemicarbazones in aqueous solution, Aust. J. Chem., Vol. 34, (1981), pp. 2549–2561. http://dx.doi.org/10.1071/CH9812549[Crossref]
  • [28] I. Chiyanzu, E. Hansell, J. Gut, P.J. Rosenthal, J.H. McKerrow and K. Chibale: “Synthesis and evaluation of isatins and thiosemicarbazone derivatives against cruzain, falcipain-2 and rhodesain, Bioorg. Med. Chem. Lett., Vol. 13, (2003), pp. 3527–3530. http://dx.doi.org/10.1016/S0960-894X(03)00756-X[Crossref]
  • [29] I. Chiyanzu, C. Clarkson, P.J. Smith, J. Lehman, J. Gut, P.J. Rosenthal and K. Chibale: “Design, synthesis and anti-plasmodial evaluation in vitro of new 4-aminoquinoline isatin derivatives, Bioorgan. Med. Chem., Vol. 13, (2005), pp. 3249–3261. http://dx.doi.org/10.1016/j.bmc.2005.02.037[Crossref]
  • [30] M.C. Rodriguez-Arguelles, A. Sanchez, M.B. Ferrari, G.G. Fava, C. Pelizzi, G. Pelosi, R. Albertini, P. Lunghi and S. Pinelli: “Transition-metal complexes of isatin-b-thiosemicarbazone. X-ray crystal structure of two nickel complexes, J. Inorg. Biochem., Vol. 73, (1999), pp. 7–15. http://dx.doi.org/10.1016/S0162-0134(98)10085-5[Crossref]
  • [31] J.S. Casas, E.E. Castellano, M.S. Garcia Tasende, A. Sanchez and J. Sordo: “Reaction of dimethylthallium(III) acetate and isatin-3-thiosemicarbazone. Crystal and molecular structure of dimethyl(dimethylsulfoxide)(isatin-3-thiosemicarbazonato)thallium(III), Inorg. Chim. Acta, Vol. 304, (2000), pp. 283–287. http://dx.doi.org/10.1016/S0020-1693(00)00078-5[Crossref]
  • [32] N.T. Akinchan, P.M. Drozdzewski and W. Holzer: “Syntheses and spectroscopic studies on zinc(II) and mercury(II) complexes of isatin-3-thiosemicarbazone, J. Mol. Struct., Vol. 641, (2002), pp. 17–22. http://dx.doi.org/10.1016/S0022-2860(02)00134-5[Crossref]
  • [33] M.B. Ferrari, C. Pelizzi, G. Pelosi and M.C. Rodriguez-Arguelles: “Preparation, characterization and X-ray structures of 1-methylisatin 3-thiosemicarbazone copper, nickel and cobalt complexes, Polyhedron, Vol. 21, (2002), pp. 2593–2599. http://dx.doi.org/10.1016/S0277-5387(02)01234-2[Crossref]
  • [34] T.S. Lobana, B.S. Sidhu, A. Castineiras, E. Bermejo and T. Nishioka: “Syntheses, NMR (1H, 31P) spectroscopy and crystal structures of complexes of copper(I) halides with isatin-3-thiosemicarbazone, J. Coord. Chem., Vol. 58, (2005), pp. 803–809. http://dx.doi.org/10.1080/00958970500110974[Crossref]
  • [35] H. Stuenzi: “Derivatives of isatin in aqueous solution. II. Z-E isomerism in isatin b-thiosemicarbazones, Aust. J. Chem., Vol. 34, (1981), pp. 373–381. http://dx.doi.org/10.1071/CH9810373[Crossref]
  • [36] T.S. Rekha Lobana, R.J. Butcher, A. Castineiras, E. Bermejo and P.V. Bharatam: “Bonding Trends of Thiosemicarbazones in Mononuclear and Dinuclear Copper(I) Complexes: Syntheses, Structures, and Theoretical Aspects, Inorg. Chem., Vol. 45, (2006), pp. 1535–1542. http://dx.doi.org/10.1021/ic051018j[Crossref]
  • [37] A.M.B. Bastos, A.F.D.C. Alcantara and H. Beraldo: “Structural analyses of 4-benzoylpyridine thiosemicarbazone using NMR techniques and theoretical calculations, Tetrahedron, Vol. 61, (2005), pp. 7045–7053. http://dx.doi.org/10.1016/j.tet.2005.04.042[Crossref]
  • [38] F.F. Jian, P.S. Zhao, Z.S. Bai and L. Zhang: “Quantum Chemical Calculation Studies on 4-Phenyl-1-(Propan-2-Ylidene)Thiosemicarbazide, Struct. Chem., Vol. 16, (2005), pp. 635–639. http://dx.doi.org/10.1007/s11224-005-8254-z[Crossref]
  • [39] C. Paiola, R. Cammi, P. Pelagatti and C. Pelizzi: “A density functional theory study of structural and NMR properties of SNN thiosemicarbazone ligands and their Pd(II) chlorocomplexes, Theochem, Vol. 623, (2003), pp. 105–119. http://dx.doi.org/10.1016/S0166-1280(02)00675-9[Crossref]
  • [40] H. Yuksek, I. Cakmak, S. Sadi, M. Alkan and H. Baykara: “Synthesis and GIAO NMR calculations for some novel 4-heteroarylidenamino-4,5-dihydro-1H-1,2,4-triazol-5-one derivatives: Comparison of theoretical and experimental 1H-and 13Cchemical shifts, Int. J. Mol. Sci., Vol. 6, (2005), pp. 219–229. http://dx.doi.org/10.3390/i6060219[Crossref]
  • [41] H. Yuksek, O. Guersoy, I. Cakmak and M. Alkan: “Synthesis and GIAO NMR calculations for some new 4,5-dihydro-1H-1,2,4-triazol-5-one derivatives: Comparison of theoretical and experimental 1H and 13C chemical shifts, Magn. Reson. Chem., Vol. 43, (2005), pp. 585–587. http://dx.doi.org/10.1002/mrc.1591[Crossref]
  • [42] N.W.S.V.N. DeSilva, E.C. Lisic and T.V. Albu: “Hybrid density functional theory investigation of a series of alloxan-based thiosemicarbazones and semicarbazones, Central Eur. J. Chem., Vol. 4, (2006), pp. 646–665. http://dx.doi.org/10.2478/s11532-006-0033-1[Crossref]
  • [43] C.C. Chambers, E.F. Archibond, S.M. Mazhari, A. Jabalameli, J.D. Zubkowski, R.H. Sullivan, E.J. Valente, C.J. Cramer and D.G. Truhlar: “Quantum chemical conformational analysis and x-ray structure of 4-methyl-3-thiosemicarbazide, Theochem, Vol. 388, (1996), pp. 161–167.
  • [44] C. Adamo and V. Barone: “Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models, J. Chem. Phys., Vol. 108, (1998), pp. 664–675. http://dx.doi.org/10.1063/1.475428[Crossref]
  • [45] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh and C. Fiolhais: “Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B, Vol. 46, (1992), pp. 6671–6687. http://dx.doi.org/10.1103/PhysRevB.46.6671[Crossref]
  • [46] K.B. Wiberg: “Comparison of density functional theory models’ ability to reproduce experimental 13C-NMR shielding values, J. Comp. Chem., Vol. 20, (1999), pp. 1299–1303. http://dx.doi.org/10.1002/(SICI)1096-987X(199909)20:12<1299::AID-JCC10>3.0.CO;2-F[Crossref]
  • [47] T.H. Sefzik, D. Turco, R.J. Iuliucci and J.C. Facelli: “Modeling NMR chemical shift: A survey of density functional theory approaches for calculating tensor properties, J. Phys. Chem. A, Vol. 109, (2005), pp. 1180–1187. http://dx.doi.org/10.1021/jp0455780[Crossref]
  • [48] H.F. Hameka: “Theory of magnetic properties of molecules, with particular emphasis on the hydrogen molecule, Rev. Mod. Phys., Vol. 34, (1962), pp. 87–101. http://dx.doi.org/10.1103/RevModPhys.34.87[Crossref]
  • [49] R. Ditchfield: “Self-consistent perturbation theory of diamagnetism. I. A gauge-invariant LCAO(linear combination of atomic orbitals) method for NMR chemical shifts, Mol. Phys., Vol. 27, (1974), pp. 789–807. http://dx.doi.org/10.1080/00268977400100711[Crossref]
  • [50] K. Wolinski, J.F. Hinton and P. Pulay: “Efficient implementation of the gaugeindependent atomic orbital method for NMR chemical shift calculations, J. Am. Chem. Soc., (1990), Vol. 112, pp. 8251–8260. http://dx.doi.org/10.1021/ja00179a005[Crossref]
  • [51] R.S. Mulliken: “Electronic population analysis on LCAO-MO molecular wave functions. I, J. Chem. Phys., Vol. 23, (1955), pp. 1833–1840. http://dx.doi.org/10.1063/1.1740588[Crossref]
  • [52] R.S. Mulliken: “Electronic population analysis on LCAO-MO molecular wave functions. II. Overlap populations, bond orders, and covalent bond energies, J. Chem. Phys., Vol. 23, (1955), pp. 1841–1846. http://dx.doi.org/10.1063/1.1740589[Crossref]
  • [53] R.S. Mulliken: “Electronic population analysis on LCAO-MO molecular-wave functions. III. Effects of hybridization on overlap and gross AO populations, J. Chem. Phys., Vol. 23, (1955), pp. 2338–2342. http://dx.doi.org/10.1063/1.1741876[Crossref]
  • [54] R.S. Mulliken: “Electronic population analysis on LCAO-MO molecular-wave functions. IV. Bonding and antibonding in LCAO and valence-bond theories, J. Chem. Phys., Vol. 23, (1955), pp. 2343–2346. http://dx.doi.org/10.1063/1.1741877[Crossref]
  • [55] J. Cioslowski: “A new population analysis based on atomic polar tensors, J. Am. Chem. Soc., Vol. 111, (1989), pp. 8333–8336. http://dx.doi.org/10.1021/ja00204a001[Crossref]
  • [56] J. Cioslowski, T. Hamilton, G. Scuseria, B.A. Hess Jr., J. Hu, L.J. Schaad and M. Dupuis: “Application of the GAPT (generalized atomic polar tensor) population analysis to some organic molecules and transition structures, J. Am. Chem. Soc., Vol. 112, (1990), pp. 4183–4186. http://dx.doi.org/10.1021/ja00167a012[Crossref]
  • [57] J. Cioslowski, P.J. Hay and J.P. Ritchie: “Charge distributions and effective atomic charges in transition-metal complexes using generalized atomic polar tensors and topological analysis, J. Phys. Chem., Vol. 94, (1990), pp. 148–151. http://dx.doi.org/10.1021/j100364a022[Crossref]
  • [58] Gaussian 03, Revision B.02, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.
  • [59] The Supplementary Material includes geometries in Cartesian coordinates, calculated isotropic magnetic shielding tensors, Mulliken and GAPT atomic charges, energetic parameters, and frequencies for all structures optimized in this work. This material can be obtained from the corresponding author by emailing your request to albu@tntech.edu.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11532-007-0012-1
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.