Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 1 | 12-20

Article title

Quantum estimation of a two-phase spin rotation

Content

Languages of publication

EN

Abstracts

EN
system, characterised by two unknown phases, and compare
the estimation precision achievable with two different strategies.
The first is a standard ‘joint estimation’ strategy, in which
a single probe state is used to estimate both parameters, while
the second is a ‘sequential’ strategy in which the two phases
are estimated separately, each on half of the total number of
system copies.
In the limit of small angles we show that, although the joint
estimation approach yields in general a better performance,
the two strategies possess the same scaling of the total phase
sensitivity with respect to the spin number j, namely ΔΦ≃ 1/j.
Finally, we discuss a simple estimation strategy based on spin
squeezed states and spin measurements, and compare its
performance with the ultimate limits to the estimation precision
that we have derived above.

Publisher

Year

Volume

1

Pages

12-20

Dates

accepted
10 - 5 - 2013
online
25 - 06 - 2013
received
30 - 11 - 2012

Contributors

author
  • École Normale Supérieure de Lyon,
    15 parvis Descartes, BP 7000,
    69342 Lyon Cedex 07, France
  • QOLS, Blackett Laboratory, Imperial College London,
    London SW7 2BW, UK
  • QOLS, Blackett Laboratory, Imperial College London,
    London SW7 2BW, UK
  • QOLS, Blackett Laboratory, Imperial College London,
    London SW7 2BW, UK

References

  • [1] V. Giovannetti, S. Lloyd and L. Maccone, Nat. Photonics5, 222 (2011).
  • [2] C. W. Helstrom and R. S. Kennedy, IEEE Trans. Inf.Theory 20, 16 (1974).[Crossref]
  • [3] S. Braunstein and C. Caves, Phys. Rev. Lett. 72, 3439(1994); S. Braunstein, C. Caves and G. Milburn, Ann.Phys. 247, 135 (1996).
  • [4] M. G. A. Paris, Int. J. Quant. Inf. 7, 125 (2009).
  • [5] H. P. Yuen and M. Lax, IEEE Trans. Inf. Theory IT-19,740 (1973).[Crossref]
  • [6] V. P. Belavkin, Theoret. Math. Phys. 3, 316 (1976).
  • [7] A. S. Holevo, Probabilistic and statistical aspects ofquantum theory (North-Holland, Amsterdam, 1982).
  • [8] H. Nagaoka, IEICE Technical Report IT89-42, 9-14(1989).
  • [9] A. Fujiwara, METR 94-9 (1994).
  • [10] M. A. Ballester, Phys. Rev. A 69, 022303 (2004).
  • [11] K. Matsumoto, J. Phys. A 35, 3111 (2002).
  • [12] G. Chiribella, G. M. D’Ariano and M. F. Sacchi, J.Phys. A: Math Gen 39, 2127 (2006).[Crossref]
  • [13] K. C. Young, M. Sarovar, R. Kosut and K. B. Whaley,Phys. Rev. A 79, 062301 (2009).
  • [14] Y. Watanabe, T. Sagawa and M. Ueda, Phys. Rev.Lett. 104, 020401 (2010).
  • [15] A. Monras and F. Illuminati, Phys. Rev. A 81, 062326(2010).
  • [16] A. Monras and F. Illuminati, Phys. Rev. A 83, 012315(2011).
  • [17] P. J. D. Crowley, A. Datta, M. Barbieri and I. A. Walmsley,arXiv:1206.0043
  • [quant-ph].
  • [18] M. G. Genoni, M. G. A. Paris, G. Adesso, H. Nha, P.L. Knight and M. S. Kim, Phys. Rev. A 87, 012107(2013).
  • [19] J. Kahn, Phys. Rev. A 75, 022326 (2007).
  • [20] A. Bisio, G. Chiribella, G. M. D’Ariano and P.Perinotti, Phys. Rev. A 82, 062305 (2010).
  • [21] M. Kitagawa, M. Ueda, Phys. Rev. A 47, 5138 (1993).[PubMed]
  • [22] D. J. Wineland, J. J.Bollinger, W. M. Itano, F. L. Moore,D. J. Heinzen, Phys. Rev. A 46, R6797 (1992).
  • [23] N. Bigelow, Nature 409, 27 (2001).
  • [24] A. D. Cronin, J. Schmiedmayer, D. E. Pritchard, Rev.Mod. Phys. 81, 1051 (2009).
  • [25] D. J. Wineland, J. J. Bollinger, W. M. Itano, D. J.Heinzen, Phys. Rev. A 50, 67 (1994); J. Bollinger,W. Itano, D. Wineland, D. Heinzen, Phys. Rev. A 54,R4649 (1996).
  • [26] D. Budker and M. Romalis, Nature Phys. 3, 227(2007); W. Wasilewski, K. Jensen, H. Krauter, J. J.Renema, M. V. Balabas, and E. S. Polzik, Phys. Rev.Lett. 104, 133601 (2010).[Crossref]
  • [27] J. N. Hollenhorst, Phys. Rev, D 19, 1669 (1979).
  • [28] D. F. Walls and G. J. Milburn, Quantum Optics,Springer, Berlin (2008).
  • [29] A. Monras, Phys. Rev. A 73, 033821 (2006).
  • [30] R. Gaiba and M. G. A. Paris, Phys. Lett. A 373, 934(2009).
  • [31] A. Monras and M. G. A. Paris, Phys. Rev. Lett. 98,160401 (2007).
  • [32] M. G. Genoni, C. Invernizzi and M. G. A. Paris, Phys.Rev. A 80, 033842 (2009).
  • [33] S. Olivares and M. G. A. Paris, J. Phys. B 42, 055506(2009).
  • [34] M. G. Genoni, S. Olivares and M. G. A. Paris, Phys.Rev. Lett. 106, 153603 (2011).
  • [35] M. D’Ariano, P. Lo Presti and M. G. A. Paris, Phys.Rev. Lett. 87, 270404 (2001).
  • [36] A. Kuzmich and E. S. Polzik, Phys. Rev. Lett. 85, 5639(2000).
  • [37] B. Julsgaard, A. Kozhekin and E. S. Polzik, Nature413, 400 (2001).
  • [38] D. W. Berry and B. C. Sanders, Phys. Rev. A 66,012313 (2002).
  • [39] D. W. Berry and B. C. Sanders, New. J. Phys. 4, 8(2002).
  • [40] M. G. Raymer, A. C. Funk, B. C. Sanders and H. DeGuise, Phys. Rev. A 67, 052104 (2003).
  • [41] D. W. Berry and B. C. Sanders, J. Phys. A: Math Gen38, L205 (2005).
  • [42] B. Yurke, Phys. Rev. Lett. 56, 1515 (1986).[PubMed]
  • [43] M. Ozawa, Phys. Lett. A 320, 367 (2004).

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_qmetro-2013-0003