Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 16 | 4 | 87-94

Article title

Simulation and sensitivity analysis for heavy linear paraffins production in LAB production Plant

Content

Title variants

Languages of publication

EN

Abstracts

EN
Linear alkyl benzene (LAB) is vastly utilized for the production of biodegradable detergents and emulsifiers. Predistillation unit is a part of LAB production plant in which that produced heavy linear paraffins (nC10-nC13). In this study, a mathematical model has been developed for heavy linear paraffins production in distillation columns, which has been solved using a commercial code. The models have been validated by the actual data. The effects of process parameters such as reflux rate, and reflux temperature using Gradient Search technique has been investigated. The sensitivity analysis shows that optimum reflux in columns are achieved.

Publisher

Year

Volume

16

Issue

4

Pages

87-94

Physical description

Dates

published
1 - 12 - 2014
online
11 - 12 - 2014

Contributors

author
  • Yasouj University, Chemical Engineering Department, Yasouj 75918-74831, Iran
  • Yasouj University, Chemical Engineering Department, Yasouj 75918-74831, Iran
  • Shiraz University of Technology, Chemical Engineering Department, Iran

References

  • 1. Zahedi, G., Yaqubi, H. & Ba-Shammakh, M. (2009). Dynamic modeling and simulation of heavy paraffin dehydrogenation reactor for selective olefin production in linear alkyl benzene production plant. Appl. Catal. A. 358 (1), 1-6. DOI: 10.1016/j.apcata.2009.01.043.[Crossref][WoS]
  • 2. Bahasin, M.M., McCain, J.H., Vora, B.V., Imai, T. & Pujado, P.R. (2001). Dehydrogenation and oxydehydrogenation of paraffins to olefins. Appl. Catal. A. 221 (1-2), 397-419. DOI: 10.1016/s0926-860x(01)00816-x.[Crossref]
  • 3. Kocal, J.A., Vora, B.V. & Imati, T. (2001). Production of Linear alkylbenzenes. Appl. Catal. A. 221 (1-2), 295. DOI: 10.1016/s0926-860x(01)00808-0.[Crossref]
  • 4. Yangyou, H., Hongye, S., Jingwei, L., Shengjing, M., Jian, C. & Jun, W. (2002). Simulation and Optimization of Linear Alkylbenzenes Distillation Process. Dev. Chem. Eng. Mineral Process. 10, 33-45. DOI: 10.1002/apj.5500100104.[Crossref]
  • 5. Dolganova, I.O., Dolganov, I.M., Ivashkina, E.N., Ivanchina, E.D. & Romanovskiy, R.V. (2012). Development of approach to modeling and optimization of non-stationary catalytic processes in oil refining and petrochemistry. Pol. J. Chem. Tech. 14 (4), 22-29. DOI: 10.2478/v10026-012-0097-y.[Crossref]
  • 6. Bhutani, N., Ray, A.K. & Rangaiah, G.P. (2006). Modeling, simulation, and multi-objective optimization of an industrial hydro-cracking unit. Ind. Eng. Chem. Res. 45 (4), 1354-1372. DOI: 10.1021/ie050423f.[Crossref]
  • 7. More, R.K., Bulasara, V.K., Uppaluri, R. & Banjara, V.R. (2010). Optimization of crude distillation system using aspen plus: Effect of binary feed selection on grass-root design. Chem. Eng. Res. Design. 88 (2), 121-134. DOI: 10.1016/j. cherd.2009.08.004.[Crossref]
  • 8. Lei, Z., Yi, C. & Yang., B. (2013). Design, optimization, and control of reactive distillation column for synthesis of tertamyl ethyl ether. Chem. Eng. Res. Design. 91 (5), 819-830. DOI: 10.1016/j.cherd.2012.08.013.[Crossref]
  • 9. Bai, Z., Ma, H., Zhang, H., Ying, W. & Fang, D. (2013). Process simulation of dimethyl ether synthesis via methanol vapor phase dehydration. Pol. J. Chem. Tech. 15 (2), 122-127. DOI: 10.2478/pjct-2013-0034.[Crossref]
  • 10. Askari, A., Karimi, H., Rahimi, M.R. & Ghanbari, M. (2012). Simulation and modeling of catalytic reforming process. Petrol. Coal. 54 (1), 76-84.
  • 11. West, A.H., Posarac, D. & Ellis, N. (2008). Assessment of four biodiesel production processes using HYSYS Plant, Bioresour. Technol. 99 (4), 6587-6601. DOI: 10.1016/j.biortech. 2007.11.046.[Crossref]
  • 12. Agarwal, M., Singh, K. & Chaurasia S.P. (2012). Simulation & sensitivity analysis for biodiesel production in a reactive distillation column. Pol. J. Chem. Tech. 14 (3), 59-65. DOI: 10.2478/v10026-012-0085-2.[Crossref]
  • 13. Seader, J.D. & Henley Ernest, J. (2006). separation process principles, 2nd edition, John Wiley & Sons, Inc., Hoboken.
  • 14. Boston, J.F. & Sullivan, S.L. (1974). A new class of solution methods for multi components, multistage separation processes. Can. J. Chem. Eng. 52 (1), 52-63. DOI: 10.1002/ cjce.5450520108. [Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_pjct-2014-0075
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.