Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 16 | 4 | 14-20

Article title

Polyurethanes from the crystalline prepolymers resistant to abrasive wear

Content

Title variants

Languages of publication

EN

Abstracts

EN
The research aimed at the selection of polyurethanes synthesized from poly(tetramethylene ether) glycol (PTMEG), as well as from two different isocyanates 4,4′-methylenebis(cyclohexyl)isocyanate (HMDI) and 4.4′-methylenebis(phenyl isocyanate) (MDI) in order to obtain polyurethane with increased resistance to abrasive wear and degradation for bio-medical application. Polyurethanes were fabricated from crystalline prepolymers extended by water. The paper presents preliminary results on polyurethane surface wettability, friction coefficient for different couples of the co-working materials such as polyurethane-polyurethane, polyurethane-titanium alloy, polyurethane-alumina, in comparison to commonly used polyethylene-titanium alloy. Shear strength of polyurethane-alumina joint, as well as viscosity of prepolymers were also measured. The values of friction coefficient were compared to literature data on commercially available polyurethane with the trade name Pellethane. Polyurethanes obtained are characterized by low abrasive wear and low friction coefficient in couple with the titanium alloy, what makes them attractive as possible components of ceramic-polymer endoprosthesis joints.

Publisher

Year

Volume

16

Issue

4

Pages

14-20

Physical description

Dates

published
1 - 12 - 2014
online
11 - 12 - 2014

Contributors

  • Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw, Poland
  • Institute of Ceramics and Building Materials, Postepu 9, 02-676 Warsaw, Poland
  • Bialystok University of Technology, Faculty of Mechanical Engineering, Wiejska 45C, 15-351 Białystok, Poland

References

  • 1. Nair, L.S., Laurencin, C.T. (2007). Biodegradable polymers as biomaterials Prog. Polym. Sci. 32, 762-798. DOI: 10.1016/j. progpolymsci.2007.05.017.[Crossref]
  • 2. Oledzka, E., Sobczak, M. & Kołodziej, W.L. (2007). Polymers in medicine - review of past achievements. Polimery 11-12, 793, in Polish.
  • 3. Ryszkowska, J.L., Auguścik, M., Sheikh, A. & Boccaccini, A.R. (2010). Biodegradable polyurethane composite scaffolds containing Bioglass® for bone tissue engineering. Comp. Sci. Tech. 70, 1894-1908. DOI: 10.1016/j.compscitech.2010.05.011.[Crossref]
  • 4. Waśniewski, B., Auguścik, M., Parzuchowski, P., Zielecka, M. & Ryszkowska, J. (2012). Polycarbonate urethane nanocomposites with nanosilica for implants of the intervertebral disc. Polimery 11-12, 812, in Polish.[Crossref]
  • 5. Domańska, A., Boczkowska, A., Izydorzak, M., Jaegermann, Z. & Kurzydłowski, K.J. (2010). Polyurethanes used in the endoprosthesis of joints. Pol. J. Chem. Tech. 12, 3, 10-14. DOI: 10.2478/v10026-010-0025-y.[Crossref]
  • 6. Jaegermanna, Z., Boczkowska, A., Paszewska, A. & Michałowski, S. (2008). Ceramic-polymer gradient composite for joint endoprosthesis application - preliminary report. Pr. Komis. Nauk Ceram. PAN, CERAMIKA, 101, 41-48, in Polish
  • 7. Jaegermann, Z., Boczkowska, A., Domańska, A. & Michałowski, S. (2008). Composite biomaterial alumina-polyurethane. Pr. Inst. Szkła, Ceramiki, Materiałów Ogniotrwałych i Budowlanych 2, 7-22, in Polish.
  • 8. Gruin, I., Markiewicz, B., Ryszkowska, J., Pacułt, J., Lubaszka, J., Kocjan, R. & Pasik, J. (1993). ”The method of cold cure elastomers fabrication”, Know-how no WP/20/93 from 26.03.93 Politechnika Warszawska, in Polish.
  • 9. Boczkowska, A. & Gruin, I. (1999). Polyurethanes from crystalline prepolymers. Eur. Polym. J. 35, 1569-1579.[Crossref]
  • 10. Boczkowska, A. (2000). Structural polymers obtained from crystalline ether-urethane-isocyanate prepolymers. PhD thesis, Warszawa, in Polish.
  • 11. Izydorzak, M. (2009). Selection of polyurethanes with increased resistance to abrasive wear for biomedical applications. MSc Thesis - Politechnika Warszawska, Warszawa, in Polish.
  • 12. Wirpsza, Z. (1991). Polyurethanes. Chemistry, technology, applications. Warszawa: WNT, in Polish.
  • 13. Guess, J.F. & Campbell, J.S. (1995). Acoustic properties of some biocompatible polymers at body temperature. Ultrasound in Medicine & Biology Vol. 21(2), 273-277.
  • 14. Rudnik, E., Resiak, I. & Wojciechowski, C. (1998) Thermoanalytical investigations of polyurethanes for medical purposes. Thermochimica Acta 320, 285-289.
  • 15. Martin, D.J., Poole Warren, L.A., Gunatillake, P.A., Mc- Carthy, S.J., Meijs, G.F. & Schindhelm, K. (2000). Polydimethylsiloxane/ polyether-mixed macrodiol-based polyurethane elastomers:biostability. Biomaterials, 1021-1029.[Crossref]
  • 16. Ojha, U., Kulkarni, P., Faust, R. (2009). Syntheses and characterization of novel biostable polyisobutylene based thermoplastic polyurethanes. Polymer 50, 3448-3457.[Crossref]
  • 17. Poussard, L., Burel, F., Couvercelle, J.P., Merhi, Y., Tabrizian, M. & Bunel, C. (2004). Hemocompatibilty of new ionic polyurethanes: infl uence of carboxylic group insertion modes. Biomaterials 25, 3473-3483. DOI: 10.1016/j.biomaterials. 2003.10.069.[Crossref]
  • 18. Yamamoto, K., Kiura, T., Nam, K., Funamoto, S., Ito, Y., Shiba, K., Katoh, A., Shimizu, S., Kurita, K., Higami, T., Masuzawa, T. & Kishida, A. (2011). Synthetic polymer-tissue adhesion Rusing an ultrasonic scalpel. Surg. Endosc. 25, 1270-1275. DOI: 10.1007/s00464-010-1357-7.[Crossref][WoS]
  • 19. Żenkiewicz, M. (2000). Adhesion and modification of the surface layer of macromolecular materials. Warszawa, WNT, in Polish.
  • 20. Olczyk, W. (1968). Polyurethanes. Warszawa, WNT, in Polish.
  • 21. Rymuza, Z. (1986). Tribology of polymers sliding Warszawa, WNT, in Polish.
  • 22. Schwart, Ch.J. & Bahadur, S. (2006). Development and testing of a novel joint wear Simulator and investigation of the viability of an elastomeric polyurethane for total-joint arthroplasty devices. Wear 262, 332-339. DOI: 10.1016/j. wear.2006.05.018.[Crossref][WoS]
  • 23. Guan, J., Fujimoto, K.L., Sacks, M.S. & Wagner, W.R. (2005). Preperation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials 26, 3961. DOI: 10.1016/j.biomaterials.2004.10.018.[Crossref]
  • 24. Gorna, K. & Gogolewski, S. (2002). Biodegaradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly(e-caprolactone)-poly(ethylene oxide) diols and various chain extenders. J. Biomed. Mater. Res., 60(4), 592-606.[Crossref]
  • 25. Guan, J., Sacks, M.S., Beckman, E.J. & Wagner, W.R. (2002). Synthesis, characterization, and cytocompatibility of elastomeric, biodegradable poly(ester-urethane)ureas based on poly(caprolactone) and putrescine. J. Biomed. Mater. Res. 61(3), 493-503.[Crossref]
  • 26. Gogolewski, S. & Gorna, K. (2007). Biodegradable polyurethane cancellous bone graft substites in the treatment of iliac crest defects. J. Biomed. Mater. Res. Part A, Volume 80A, Issue 1, 94-101. DOI: 10.1002/jbm.a.30834.[WoS][Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_pjct-2014-0063
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.