Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 16 | 3 | 74-79

Article title

Future Applications of Apricot (Prunus Armeniaca Kaisa) ß Galactosidase in Dairy Industry

Content

Title variants

Languages of publication

EN

Abstracts

EN
The present study demonstrates the immobilization of β galactosidase from apricots (Prunus armeniaca kaisa) on an inexpensive concanavalin A layered cellulose-alginate hybrid gel. Immobilized β galactosidase retained 78% of the initial activity after crosslinking by glutaraldehyde. It exhibited greater fraction of activity at both acidic and basic pH, and showed broad spectrum temperature optimum as compared to free enzyme. Moreover, immobilized enzyme exhibited higher thermal stability at 60°C and retained 80% of the original enzyme activity in presence of 3% galactose. The crosslinked immobilized enzyme showed improved hydrolysis of lactose from milk and whey in batch processes at 50°C as well as in continuous reactors operated at fl ow rate of 20 mL/h and 30 mL/h even after one month. Moreover, crosslinked adsorbed β galactosidase retained 76% activity even after its sixth repeated use, thereby promoting its use for lactose hydrolysis in various dairy products even for longer durations.

Publisher

Year

Volume

16

Issue

3

Pages

74-79

Physical description

Dates

published
1 - 9 - 2014
online
3 - 10 - 2014

Contributors

  • King Abdulaziz University, Center of Excellence in Genomic and Medicine Research, Jeddah-21589, Saudi Arabia
  • Ibn Sina National College for Medical Studies, Department of Biochemistry, Jeddah-21418, Saudi Arabia
  • King Abdulaziz University, Center of Excellence in Genomic and Medicine Research, Jeddah-21589, Saudi Arabia
  • Universiti Kebangsaan Malaysia, School of Chemical Sciences and Food Technology, Faculty of Science and Technology, 43600 Bangi, Selangor Darul Ehsan, Malaysia
  • King Abdulaziz University, Center of Excellence in Genomic and Medicine Research, Jeddah-21589, Saudi Arabia
  • King Abdulaziz University, Center of Excellence in Genomic and Medicine Research, Jeddah-21589, Saudi Arabia
  • Universiti Kebangsaan Malaysia, School of Chemical Sciences and Food Technology, Faculty of Science and Technology, 43600 Bangi, Selangor Darul Ehsan, Malaysia

References

  • 1. Ansari, S.A. & Husain, Q. (2012). Lactose hydrolysis from milk/whey in batch and continuous processes by concanavalin A- -Celite 545 immobilized Aspergillus oryzae b galactosidase. Food Bioprod. Proc. 90, 351-359. DOI: http://dx.doi.org/10.1016/j.fbp.2011.07.003.[Crossref]
  • 2. Heyman, B. (2006). Lactose intolerance in infants, children and adolescents. Pediatrics 118, 1279-1286. DOI: 10.1542/ peds.2006-1721.[Crossref]
  • 3. Demirhan, E., Apar, D.K. & Ozbek, B. (2010). A modeling study on hydrolysis of whey lactose and stability of β galactosidase. Kor. J. Chem. Eng. 27, 536-545. DOI: 10.1007/ s11814-010-0062-5.[Crossref]
  • 4. Ansari, S.A., Satar, R., Chibber, S. & Khan, M.J. (2013). Enhanced stability of Kluyveromyces lactis β galactosidase immobilized on glutaraldehyde modified multiwalled carbon nanotubes. J. Mol. Cat. B Enz. 97, 258-263. DOI: http://dx.doi.org/10.1016/j.molcatb.2013.09.008.[Crossref]
  • 5. Mateo, C., Palomo, J.M. Fernandez-Lorente, G., Guisan, J.M. & Fernandez-Lafuent, R. (2007). Improvement of enzyme prope rties via immobilization techniques. Enzym. Microb. Technol. 40, 1451-1463. DOI: 10.1016/j.enzmictec.2007.01.018.[Crossref]
  • 6. Iyer, P.V. & Ananthanarayan L. (2008). Enzyme stability and stabilization: Aqueous and non-aqueous environment. Proc. Biochem. 43, 1019-1032. DOI: http://dx.doi.org/10.1016/j.procbio.2008.06.004.[Crossref]
  • 7. Grosova, Z., Rosenberg, M. & Rebros, M. (2008). Perspectives and applications of immobilized β galactosidase in food industry - A review. Czech J. Food Sci. 26, 1-14. DOI: DOI: 10.3109/07388550903330497.[Crossref]
  • 8. Betancor, L., Luckarift, R., Seo, H., Brand, O. & Spain, JC. (2008). Three-dimensional immobilization of β galactosidase on a silicon surface. Biotechnol. Bioeng. 99, 261-267. DOI: 10.1002/bit.21570.[Crossref]
  • 9. Gurdas, S., Gulec, HA. & Mutlu, M. (2012). Immobilization of Aspergillus oryzae β galactosidase onto Duolite A568 resin via simple adsorption mechanism. Food Bioproc. Technol. 5, 904-911. DOI: 10.1007/s11947-010-0384-7.[Crossref][WoS]
  • 10. Ansari, S.A. & Satar, R. (2012). Recombinant β-galactosidases - Past, present and future: A mini review. J. Mol. Cat. B Enz. 81, 1-6. DOI: http://dx.doi.org/10.1016/j.molcatb.2012.04.012.[Crossref]
  • 11. Zhou, Q.Z.K. & Chen, X.D. (2001). Immobilization of β galactosidase on graphite surface by glutaraldehyde. J. Food Eng. 48, 69-74. DOI: http://dx.doi.org/10.1016/S0260-8774(00)00147-3.[Crossref]
  • 12. Pessela, B.C.C., Mateo, C., Filho, M., Carrascosa, A. Lafuente, RF. & Guisan, J.M. (2007). Selective adsorption of large proteins on highly activated IMAC supports in the presence of high imidazole concentrations: Purification, reversible immobilization and stabilization of thermophilic α and β galactosidase. Enz. Microb. Technol. 40, 242-248. DOI: 10.1016/j.fct2010.04.016.[WoS][Crossref]
  • 13. Diwedi, A. & Kayastha, A.M. (2009). Stabilization of β galactosidase (from peas) by immobilization onto amberlite MB-150 beads and its application in lactose hydrolysis. J. Agric. Food Chem. 57, 682-688. DOI: 10.1021/jf802573j.[Crossref][WoS]
  • 14. Rhimi, M., Boisson, A., Dejob, M., Boudebouze, S., Maguin, E., Haser, R. & Aghajari, N. (2010). Efficient bioconversion of lactose in milk and whey: immobilization and biochemical characterization of β galactosidase from the dairy Streptococcus thermophilus LMD9 strain. Res. Microb. 161, 515-525. DOI: 10.1016/j.resmic.2010.04.011.[Crossref]
  • 15. Sun, S., Dong, L., Xu, X. & Shen, S. (2010). Immobilization of β galactosidase from Aspergillus oryzae on macroporous poly GMA newly prepared. Int. J. Chem. 2, 89-96. DOI: 10.1155/2011/682124.[Crossref]
  • 16. Ansari, S.A. & Husain, Q. (2011). Bioaffinity based immobilization of almond (Amygdalus communis) b galactosidase on Con A-layered calcium alginate-cellulose beads: its application in lactose hydrolysis in batch and continuous mode. Iran. J. Biotechnol. 9, 290-301. DOI: 10.4236/ijb.2011.534032.[Crossref]
  • 17. Dwevedi, A., Kumar, A., Singh, D.P., Srivastava, O.N., & Kayastha, A.M. (2009). Lactose nano-probe optimized using response surface methodology. Biosensors and Bioelectronics 25, 784-790. DOI: 10.1016/j.bios.2009.08.029.[Crossref]
  • 18. Kishore, D. & Kayastha, A.M. (2012). Optimization of immobilization conditions for chick pea β-galactosidase (CpGAL) to alkylamine glass using response surface methodology and its applications in lactose hydrolysis. Food Chemistry 134, 1113-1122. DOI:10.1016/j.foodchem.2012.03.055.[Crossref]
  • 19. Kishore, D., Talat, M., Srivastava, O.N. & Kayastha, A.M. (2012). Immobilization of β-galactosidase onto functionalized graphene nano-sheets using response surface methodology and its analytical applications towards milk and whey lactose. Plos One 7, e40708. DOI: 10.1371/journal.pone.0040708.[Crossref]
  • 20. Gulzar, S. & Amin, S. (2012). Kinetic studies on β-galactosidase isolated from apricots (Prunus armeniaca kaisa). Amer. J. Plant Sc. 3, 636-645. DOI: 10.4236/ajps.2012.35077.[Crossref]
  • 21. Lowry, O.H., Rosenbrough, N.J, Farr, A.L. & Randall R.J. (1951). Protein measurements with the follin reagent. J. Biol. Chem. 193, 265-275. DOI: 10.1021/jf021099r.[Crossref]
  • 22. Zhang, S., Gao, S. & Gao, G. (2010). Immobilization of β galactosidase onto magnetic beads. Appl. Biochem. Biotechnol. 160, 1386-1393. DOI: 10.5539/ijc.v5n4p38.[WoS][Crossref]
  • 23. Elnashar, M.M.M. & Yassin, M.A. (2009). Lactose hydrolysis by β galactosidase covalently immobilized to thermally stable biopolymers. Appl. Biochem. Biotechnol. 159, 426-437. DOI: 10.1007/s12010-008-8453-3.[Crossref][WoS]
  • 24. Park, A. & Oh, D. (2010). Effects of galactose and glucose on the hydrolysis reaction of a thermostable β galactosidase from Caldicellulosiruptor saccharolyticus. Appl. Microb. Biotechnol. 85, 1427-1435. DOI: 10.1007/s00253-009-2165-7.[Crossref]
  • 25. Kaur, G., Panesar, PS., Bera, MB. & Kumar, H. (2009). Hydrolysis of whey lactose using CTAB-permeabilized yeast cells. Bioproc. Biosyst. Eng. 32, 63-67. DOI: 10.1007/s00449-008-0221-9.[WoS][Crossref]
  • 26. Mammarella, E.J. & Rubiolo, A.C. (2006). Predicting the packed-bed reactor performance with immobilized microbial lactase. Proc. Biochem. 41, 1627-1636. DOI: 10.1016/j. procbio.2006.03.009.[Crossref]
  • 27. Panesar, R., Panesar, P.S., Singh, R.S., Kennedy, J.F. & Bera, M.B. (2007). Production of lactose hydrolyzed milk using ethanol permeabilized yeast cells. Food Chem. 101, 786-790. DOI: 10.1016/j.foodchem.2006.02.064.[Crossref][WoS]
  • 28. Szczodrak, J. (2000). Hydrolysis of lactose in whey permeate by immobilized β galactosidase from Kluveromyces fragilis. J. Mol. Catal. B: Enzym. 10, 631-637. DOI: 10.1016/ S1381-1177(00)00187-9.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_pjct-2014-0054
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.