Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 16 | 1 | 59-62

Article title

Removal of vanadium, potassium and iron from spent vanadium catalyst by leaching with citric acid at atmospheric pressure

Content

Title variants

Languages of publication

EN

Abstracts

EN
The effect of time, temperature, the catalyst particle size and the ratio of the catalyst weight to the leaching solution volume (S:L) on the treatment of spent vanadium catalyst components was determined using citric acid solutions at atmospheric pressure. The optimal parameters of catalyst leaching in 10% acid solutions at atmospheric pressure are: T = 323 K, t = 4 h, the particle size of less than 0.160 mm, the S:L ratio below 0.1. Under these conditions it was possible to dissolve about 90% of vanadium and potassium compounds and more than 60% of iron compounds contained in the catalyst. These results fall within the scope of research on a comprehensive method for recovering spent vanadium catalyst components.

Publisher

Year

Volume

16

Issue

1

Pages

59-62

Physical description

Dates

published
1 - 03 - 2014
online
25 - 03 - 2014

Contributors

  • Nicolaus Copernicus University, Faculty of Chemistry, Department of Chemical Technology, ul. Gagarina 7, 87-100 Toruń, Poland

References

  • 1. Białowicz, K. & Trypuć, M. (2011). Effect of Rosulf an L and Sulforokanol L225/1 on calcium carbonate properties. Przem. Chem. 90 (1), 148-152 (in Polish).
  • 2. Białowicz, K. (2010). Precipitation of calcium carbonate from distillation residues and a fi ltrates from the solvay processat 293 K. Part 2. Processing of diluted solutions. Przem. Chem. 89 (1), 77-80 (in Polish).
  • 3. Trypuć, M. & Białowicz, K. (2010). Precipitation of calcium carbonate from post-distillation liquor and post-fi ltration liquid from Solvay process in the presence of CaCO3 crystals. Przem. Chem. 89 (10), 1357-1360 (in Polish).
  • 4. Białowicz, K., Trypuć, M., Kiełkowska, U. (2010). Precipitation of calcium carbonate from distillation residues and a fi ltrates from the Solvay process at 293 K. Part 1. Processing of concentrated solutions. Przem. Chem. 89 (1), 72-76 (in Polish).
  • 6. Białowicz, K., Trypuć, M., Kiełkowska, U. (2008). Precipitation of calcium carbonate in presence of urea. Przem. Chem. 87 (10), 1053-1056 (in Polish).
  • 7. Trypuć, M. & Białowicz, K. (2011). CaCO3 production using liquid waste from Solvay method. J. Clea. Prod. 19, 751-756. DOI: 10.1016/j.jclepro.2010.11.009.[Crossref]
  • 8. The European Environment (State and outlook 2010). (2010). European Environment Agency: Copenhagen. DOI:10.2800/45773.[Crossref]
  • 9. Report on the state of the environment in Poland 2008. (2010). GIOS, Environmental Monitoring Library: Warszawa (in Polish).
  • 10. Grzesiak, P. (2006). Utilization of industrial wastes from sulfuric acid production process. Przem. Chem. 8-9, 1015-1019 (in Polish).
  • 11. Grobela, M., Grzesiak, P. & Motała, R. (2010). The infl uence of iron oxide on properties and durability of vanadium catalyst used in the oxidation of sulfur dioxide. Przem. Chem. 89 (2), 178-182 (in Polish).
  • 12. Ksibi, M., Elaloui, E., Houas, A. & Moussa, N. (2003). Diagnosis of deactivation sources for vanadium catalysts used in SO2 oxidation reaction and optimization of vanadium extraction from deactivated catalysts. Appl. Surf. Sci. 220, 105-112. DOI: 10.1016/S0169-4332(03)00748-7.[Crossref]
  • 13. Mazurek, K. (2012). Studies on the optimum conditions for leaching the spent vanadium catalyst from metallurgical plants with sodium hydroxide solutions. Przem. Chem. 91 (2), 234-238 (in Polish).
  • 14. Mazurek, K., Białowicz, K. & Trypuć, M. (2010). Extraction of vanadium compounds from the used vanadium catalyst with the potassium hydroxide solution. Pol. J. Chem. Techn. 12 (1), 23-28. DOI: 10.2478/v10026-010-0005-2.[Crossref][WoS]
  • 15. Mazurek, K. & Trypuć, M. (2009). Recovery of the components of the spent vanadium catalyst with sulfuric(VI) acid solutions. Przem. Chem. 88 (11), 1248-1251 (in Polish).
  • 16. Mazurek, K. (2013). Recovery of vanadium, potassium and iron from a spent vanadium catalyst by oxalic acid solution leaching, precipitation and ion exchange processes. Hydrometallurgy 134-135, 26-31. DOI: 10.1016/j.hydromet.2013.01.011.[Crossref][WoS]
  • 17. Mazurek, K., Białowicz, K., Trypuć, M. (2010). Recovery of vanadium, potassium and iron from a spent catalyst using urea solution. Hydrometallurgy 103 (1-4), 19-24. DOI: 10.1016/j. hydromet.2010.02.008.[WoS][Crossref]
  • 18. Lee, F.M., Knudsen, R.D. & Kidd, D.R. (1992). Reforming catalyst made from the metals recovered from spent atmospheric residue of desulphurisation catalyst. Ind. Eng. Chem. Res. 31 487-490. DOI: 10.1021/ie00002a006.[Crossref]
  • 19. Zeng, L. & Cheng, C.Y. (2009). A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurization catalysts. Part I: metallurgical processes. Hydrometallurgy 98, 1-9. DOI: 10.1016/j.hydromet.2009.03.010.[WoS][Crossref]
  • 20. Brouwer, P. (2006). Theory of XRF. PANalytical B.V.: Almelo, Netherlands.
  • 21. Shao, Y., Feng, Q., Chen, Y., Leming, O., Zhang, G. & Lu, Y. (2009). Studies on recovery of vanadium from desilication residue obtained from processing of a spent catalyst. Hydrometallurgy 96, 166-170, DOI: 10.1016/j.hydromet.2008.10.005.[Crossref][WoS]
  • 22. Khorfan, S., Wahoud, A. & Reda, Y. (2001). Recovery of vanadium pentaoxide from spent catalyst used in the manufacture of sulphuric acid. Periodica Polytechnica Ser. Chem. Eng. 45, 131-137, DOI: 10.3311/pp.ch.2001-2.03.[Crossref]
  • 23. Kiełkowska, U., Białowicz, K., Trypuć, M. & Grzesiak, P. (2008). Extraction of vanadium compounds from spent vanadium catalyst using NaOH solution, Sulfuric acid - new opportunities, IOR Poznań, 315-322 (in Polish).
  • 24. Grzesiak, P. & Grobela, M. (2007). The infl uence of iron on the some properties of vanadium catalyst used to the SO2 oxidation process. IOR PIB: Poznań, Poland (in Polish).
  • 25. Grzesiak, P., Grobela, M., Motała, R. (2007). The infl uence of the catalyst worktime on SO2 emission quantity from the sulfuric acid system and the catalyst waste material. Pol. J. Chem. Technol. 3(9), 134-137, DOI: 10.2478/v10026-007-0073-0.[Crossref]
  • 26. Grzesiak, P., Grobela, M., Motała, R. & Łukaszyk, J. (2011). Phase changes in vanadium catalysts containing iron compounds. Przem. Chem. 90 (12), 2198-2201 (in Polish).
  • 27. Grzesiak, P., Grobela, M., Motała, R. & Mazurek, K. (2010). Effect of recovered silica on the properties of new vanadium catalyst. Przem. Chem. 89 (4), 372-376 (in Polish).

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_pjct-2014-0010
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.