Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 15 | 4 | 89-94

Article title

Influence of the kind and concentration of ethoxylated alcohols on the transport of citric acid through polymer inclusion membranes

Content

Title variants

Languages of publication

EN

Abstracts

EN
Research into the influence of ethoxylated alcohols on the citric acid transport through polymer inclusion membranes (PIMs) has been carried out. This process may be used in the future as one of the methods of citric acid isolation. Ethoxylated alcohols, which were GENAPOL® X020, X060 and X150, served as both: plasticizer and carrier. The results showed that the maximum values of citric acid fl ux [mol/(m2.s)] were equal to: 1.02.10-4 (X020), 1.57.10-4 (X060) and 1.77.10-4 (X150). The obtained results allow proceeding further study on using the polymer inclusion membranes, as an alternative to traditional methods of citric acid separation, which are precipitation and extraction.

Publisher

Year

Volume

15

Issue

4

Pages

89-94

Physical description

Dates

published
1 - 12 - 2013
online
31 - 12 - 2013

Contributors

author
  • Poznan University of Technology, Institute of Chemical and Engineering, pl. M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland
  • Poznan University of Technology, Institute of Chemical and Engineering, pl. M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland
  • Poznan University of Technology, Institute of Chemical and Engineering, pl. M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland
  • Poznan University of Technology, Institute of Chemical and Engineering, pl. M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland

References

  • 1. Kristiansen, B., Mattey, M. & Linden, J. (2002). Citricacid biotechnology (1st ed.). Taylor and Francis.
  • 2. Dhillon, G.S., Brar, S.K. , Verma, M. & Tyagi, R.D. (2011). Recent advances in citric acid bio-production and recovery. Food Bioprocess Technol. 4(4), 505-509. DOI: 10.1007/s11947-010-0399-0.[Crossref]
  • 3. Papanikolaou, S., Munigl ia, L., Chevalot, I., Aggelis, G. & Marc, I. (2002). Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. J. Appl. Microbiol. 92 (4), 737-744. DOI: 10.1046/j.1365-2672.2002.01577.x.[Crossref]
  • 4. Rywińska, A., Rymowicz, W. , Żarowska, B. & Wojtatowicz, M. (2009). Biosynthesis of citric acid from glicerol by acetale mutants of Yarrowia lipolytica in fed-batch fermentation. FoodTechnol. Biotechnol. 47, 1-6.
  • 5. Soccol, C., Vandenberghe, L. & Rodrigues, C. (2008). Current Developments in solid-state fermentation. Productionof Organic Acids by Solid-state Fermentation, (pp. 205-229). Springer New York, Retrieved October, 2011, from Springer- Link, http://link.springer.com/book/10.1007/978-0-387-75213-6/ page/1. DOI: 10.1007/978-0-387-75213-6_10.[Crossref]
  • 6. da Silva, G.P., Mack, M. & Contiego, J. (2009). Glicerol: A promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 27, 30-39. DOI: 10.1016/j.biotechadv. 2008.07.006.[Crossref][WoS]
  • 7. Kirsch, T., Ziegenfuss, H. & Maurer, G. (1997). Distribution of citric, acetic and oxalic acids between water and organic solutions of tri-n-octylamine. Fluid Phase Equilib. 129, 235-266.
  • 8. Juang, R.S., Huang, R.H. & Wu, R.T. (1997). Separation of citric and lactic acids in aqueous solutions by solvent extraction and liquid membrane processes. J. Membr. Sci. 136, 89-99.
  • 9. Walkowiak, W., Kozłowski, C.A., Pellowski, W. (2003). Zastosowanie polimerowych membran inkluzyjnych do wydzielania i separacji jonów metali. Membrany teoria i praktyka (pp. 47-78). Toruń, Poland, Wydawnictwo UMK.
  • 10. Kim, J.S., Kim, S.K. & Ko, J.W. (2000). Selective transport of cesium ion in polymeric VTA membrane containing calixcrown ethers. Talanta 52, 1143-1148.
  • 11. Sak ai, Y., Kadota, K. & Hayashita, T. (2010). The effect of the counter anion on the transport of thiourea in a PVC-based polymer inclusion membrane using Capriquat as carrier. J. Membr. Sci. 346(2), 250-255. DOI: 10.1016/j.memsci. 2009.09.038.[Crossref][WoS]
  • 12. Per eira, N., St. John, A. & Cattrall, R. (2009). Infl uence of composition of polymer inclusion membranes on their homogeneity and fl exibility. Desalination 236(1-3), 327-333. DOI: 10.1016/j.desal.2007.10.083.[WoS][Crossref]
  • 13. Ngh iem, L.D., Mornane, P., Potter, I.D., Perera, J.M., Cattrall, R.W. & Kolev, S.D. (2006). Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs). J. Membr. Sci. 281(1-2), 7-41. DOI: 10.1016/j.memsci.2006.03.035.[Crossref]
  • 14. Lamb, J.D. & Nazarenko, A.Y. (1997). Lead(II) ion sorption and transport using polymer inclusion membranes containing tri-octylphosphine oxide. J. Membr. Sci. 134(2), 327-333. DOI: 10.1016/S0376-7388(97)00115-4.[Crossref]
  • 15. Gaj da, B., Skrzypczak, A. & Bogacki, M.B. (2010). Separation of cobalt (II), nickel (II), zinck (II) and cadium (II) ions from chloride solutions. Physicochem. Probl. Miner. Process. 46, 289-294.
  • 16. Pos piech, B. & Walkowiak, W. (2007). Separation of copper(II), cobalt(II) and nickel(II) from chloride solutions by polymer inclusion membranes. Sep. Purif. Technol. 57(3), 461-465. DOI: 10.1016/j.seppur.2006.07.005.[Crossref][WoS]
  • 17. Alm eida, M. (2012). Recent trends in extraction and transport of metal ions using polymer inclusion membranes (PIMs).\ J. Membr. Sci. 416, 9-23. DOI: 10.1016/j.memsci.2012.06.006[Crossref]
  • 18. Mat sumoto, M., Takagi, T. & Kondo, K. (1998). Separation of lactic acid using polymeric membrane containing a mobile carrier. J. Ferment. Bioeng. 85(5), 483-487. DOI: 10.1016/ S0922-338X(98)80066-4.[Crossref]
  • 19. Gaj ewski, P. & Bogacki, M.B. (2012). Infl uence of Alkyl Chain Length in 1-Alkylimidazol on the Citric Acid Transport Rate across Polymer Inclusion Membrane, Separ. Sci. Technol. 47, 1374-1382. DOI: 10.1080/01496395.2012.672517.[WoS]
  • 20. Aro us, O., Saad Saoud, F. & Kerdjoudj, H. (2010). Cellulose triacetate properties and their effect on the thin fi lms morphology and performance. Innovations in Thin Film Processing and Characterisation. 17-20 November 2009, (pp. 1-5), Nancy, France.
  • 21. Munro, T.A. & Smithe, B.D. (1997). Facilitated transport of amino acids by fi xed-site jumping. Chem. Commun. 2167-2168.[Crossref]
  • 22. Riggs, J.A. & Smith, B.D. (1997). Facilitated Transport of Small Carbohydrates through Plasticized Cellulose Triacetate. J. Am. Chem. Soc. 119(11), 2765-2766.
  • 23. White, K.M., Smith, B.D., Duggan, P.J., Sheahan, S.L. & Tyndall, E.M. (2001). Mechanism of facilitated saccharide transport through plasticized cellulose triacetate membranes. J. Membr. Sci. 194, 165-175.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_pjct-2013-0074
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.