Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 15 | 3 | 115-120

Article title

The application of ultrafiltration for separation of glycerol solution fermented by bacteria

Content

Title variants

Languages of publication

EN

Abstracts

EN
A biotechnological synthesis generated a fermentation broth containing the dissociated forms of organic compounds and residual mineral salts. An effective method of selective removal of the ionic species and organic compounds from solutions comprises nanofiltration and reverse osmosis. Ultrafiltration (UF) was used in this work as a pre-treatment method for the preparation of feed for these processes. The UF study was carried out with a real broth, which was obtained using Citrobacter freundii bacteria for the fermentation of glycerol solutions, resulting in the UF permeate with turbidity below 0.1 NTU. However, a significant decline of the permeate flux was observed during the UF process. The influence of the transmembrane pressure on the fouling intensity of used ceramic membranes was investigated. A periodical membrane cleaning was carried out by rinsing with water and a 1 wt % solution of sodium hydroxide. The applied cleaning procedures permitted to restore the initial permeate flux.

Publisher

Year

Volume

15

Issue

3

Pages

115-120

Physical description

Dates

published
1 - 09 - 2013
online
20 - 09 - 2013

Contributors

  • West Pomeranian University of Technology, Szczecin, Institute of Chemical Technology and Environment Engineering, ul. Pułaskiego 10, 70-322 Szczecin, Poland
author
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical Technology and Environment Engineering, ul. Pułaskiego 10, 70-322 Szczecin, Poland

References

  • 1. Gungormusler, M., Gonen, C. & Azbar, N. (2011). Continuous production of 1,3-propanediol using raw glycerol with immobilized Clostridium beijerinckii NRRL B-593 in comparison to suspended culture, Bioprocess Biosyst. Eng. 34, 727-733. DOI: 10.1007/s00449-011-0522-2.[Crossref]
  • 2. Liu, B., Christiansen, K., Parnas, R., Xu, Z. & Li, B. (2013). Optimizing the production of hydrogen and 1,3-propanediol in anaerobic fermentation of biodiesel glycerol, Int. J. HydrogenEnergy, 383, 196-205. DOI: 10.1016/j.ijhydene.2012.12.135.[Crossref]
  • 3. Leja, K., Czaczyk, K. & Myszka, K. (2011). The use of microorganisms in 1,3-Propanediol production, Afr. J. Microbiol. Res., 5 (26), 4652-4658. DOI: 10.5897/AJMR11.847.[Crossref]
  • 4. Raynaud, C., Sarcabal, P., Meynial-Salles, I., Croux, Ch. & Soucaille, P. (1993). Molecular characterization of the 1,3-propanediol (1,3-PD) operon of Clostridium butyricum, Appl. Microbiol. Biotechnol., 38, 453-457. DOI: 10.1073_pnas.0734105100.
  • 5. Barbirato, F., Himmi, El H., Conte, T. & Bories, A. (1998). 1,3-propanediol production by fermentation: An interesting way to valorize glycerin from the ester and ethanol industries, Ind. Crops Prod., 7, 281-289. DOI: 10.1016/S0926-6690(97)00059-9.[Crossref]
  • 6. Metsoviti, M., Zeng, An.P., Koutinas, A.A. & Papanikolaou, S. (2013). Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses, J. Biotechnol., 163, 408-418. DOI: 10.1016/j.jbiotec.2012.11.018.[WoS][Crossref]
  • 7. Anand, P. & Saxena, R.K. (2012). A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol of growth and 1,3-propanediol production from Citrobacter freundii, New Biotechol., 29, 199-205. DOI: 10.1016/j. nbt.2011.05.010.[Crossref]
  • 8. Boenigk, R., Bowien, S. & Gottschalk, G. (1993). Fermentation of glycerol to 1,3-propanediol in continuous cultures of Citrobacter freundii, Appl. Microbiol. Biotechnol., 38, 453-457. DOI: 10.1007/BF00242936.[Crossref]
  • 9. Xiu, Z.L. & Zeng, A.P. (2008). Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl. Microbiol. Biotechnol., 78, 917-926. DOI: 10.1007/s00253-008-1387-4.[WoS][Crossref]
  • 10. Li, Z., Jiang, B., Hang, D. & Xiu, Z. ( 2009). Aqueous two-phase extraction of 1,3-propanediol from glycerol-based fermentation broths, Sep. Purif. Technol., 66, 472-478. DOI: 10.1016/j.seppur.2009.02.009.[WoS][Crossref]
  • 11. Wu, R.C., Ren, H.J. Xu, Y.Z. & Liu, D.H. (2010). The final recover of salt from 1,3-propanadiol fermentation broth. Sep. Purif. Technol, 73, 122-125. DOI: 10.1016/j.seppur.2010.03.013.[Crossref][WoS]
  • 12. Annand, P., Saxena, R.K. & Marwah, R.G. (2011). A novel downstream process for 1,3-propanediol from glycerol- -based fermentation, Appl. Microbiol. Biotechnol., 90, 1267-1276. DOI: 10.1007/s00253-011-3161-2.[WoS][Crossref]
  • 13. Vellenga, E. & Trägårdh, G. (1998). Nanofiltration of combined salt and sugar solutions: coupling between retentions. Desalination, 120, 211-220. DOI: 10.1016/s0011-9164(98)00219-7.[Crossref]
  • 14. Schäfer, A.I., Fane, A.G. & Waite, T.D. (Eds.). (2005). Nanofiltration: Principles and applications. Oxford, UK: Elsevier Advanced Technology.
  • 15. Bonnélye, V., Guey, L. & Del Castillo, J. (2008). UF/ MF as RO pre-treatment: the real benefit, Desalination, 222, 59-65. DOI: 10.1016/j.desal.2007.01.129.[WoS][Crossref]
  • 16. Blanpain-Avet, P., Migdal, J.F. & Bénézech, T. (2009). Chemical cleaning of a tubular ceramic microfiltration membrane fouled with a whey protein concentrate suspension-Characterization of hydraulic and chemical cleanliness, J. Membr. Sci., 337, 153-174. DOI: 10.1016/j.memsci.2009.03.033.[WoS][Crossref]
  • 17. Blanpain-Avet, P., Migdal, J.F. & Bénézech, T. (2004). The effect of multiple fouling and cleaning cycles on a tubular ceramic microfiltration membrane fouled with z whey protein concentrate, Food Bioproducts Process., 82 (C3), 231-234. DOI: 10.1205/fbio.82.3.231.44182.[Crossref]
  • 18. Ogunbiyi, O.O., Miles, N.J. & Hilal, N. (2008). The effects of performance and cleaning cycles of new tubular ceramic microfiltration membrane fouled with a model yeast suspension, Desalination, 220, 273-289. DOI: 10.1016/j.desal.2007.01.034.[WoS][Crossref]
  • 19. Juang, R.S., Chen, H.L. & Chen, Y.S. (2008). Resistance-in-series analysis in cross-flow ultrafiltration of fermentation broths of Bacillus subtilis culture, J. Membr. Sci., 323, 193-200. DOI: 10.1016/j.memsci.2008.06.032.[Crossref]
  • 20. Markardij, A., Chen, X.D. & Farid, M.M. (1999). Microfiltration and ultrafiltration of milk: some aspects of fouling and cleaning, Food Bioproducts Process., 77, 107-113. DOI: 10.1205/096030899532394.[Crossref]
  • 21. Karasu, K., Glennon, N., Lawrence, N.D., Stevens, G.W., O’Connor, J.O., Barber, A.R., Yoshikawa, S. & Kentish, S.E. (2010). A comparison between ceramic and polymeric membrane systems for casein concentrate manufacture, Int. J. Dairy Technol., 63 (2), 284-289. DOI: 10.1111/j.1471-0307.2010.00582.x.[WoS][Crossref]
  • 22. Hwang, K.J., Wang, T.T., Iritani, E. & Katagiri, N. (2010). Effect of gel particle softness on the performance of cross-flow microfiltration, J. Membr. Sci., 35, 130-137. DOI: 10.1016/j. memsci.2010.08.043.[Crossref]
  • 23. Kazemimoghadam, M. & Mohammadi, T. (2007). Chemical cleaning of ultrafiltration membranes in the milk industry, Desalination, 204, 213-218. DOI: 10.1016/j.desal.2006.04.030.[Crossref]
  • 24. Blanpain-Avet, P., Migdal, J.F. & Bénézech, T. (2004). The effect of multiple fouling and cleaning cycles on a tubular ceramic microfiltration membrane fouled with a whey protein concentrate. Membrane performance and cleaning efficiency, Food Bioproducts Process, 82 (C3), 231-243. DOI: 10.1205/ fbio.82.3.231.44182.[Crossref]
  • 25. Cabero, M.L., Riera, F.A. & Alvarez, R. (1999). Rinsing of ultrafiltration ceramic membranes fouled with whey proteins: effects on cleaning procedures, J. Membr. Sci. 154, 239-250. DOI: 10.1016/S0376-7388(98)00294-4.[Crossref]
  • 26. Bachin, P., Aimar, P. & Field, R.W. (2006). Critical and sustainable fluxes: Theory, experiments and applications, J. Membr. Sci., 281, 42-69. DOI: 10.1016/j.memsci.2006.04.014.[Crossref]
  • 27. Nigam, M.O., Bansal, B. & Chen, X.D. (2008). Fouling and cleaning of whey protein concentrate fouled ultrafiltration membranes, Desalination, 218, 313-322. DOI: 10.1016/j. desal.2007.02.027.[Crossref][WoS]
  • 28. Madaeni, S.S. & Mansourpanah, Y. (2004). Chemical cleaning of reverse osmosis membranes fouled by whey, Desalination, 161, 13-24. DOI: 10.1016/S0011-9164(04)90036-7. [Crossref][WoS]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_pjct-2013-0057
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.