Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 15 | 3 | 110-114

Article title

Determination of biodegradation rate of carrier for microorganism immobilization fabricated based on starch

Content

Title variants

Languages of publication

EN

Abstracts

EN
The study was aimed on the determination of biodegradation rate of extruded starch carriers, with or without immobilized microorganisms in diversified storage conditions. The research was conducted on potato starch, in which Saccharomyces cerevisiae yeast cells were immobilized. Preparations with and without yeasts were than placed for 84 days in the environments of: light soil, heavy soil, compost, water and activated sludge. After 0, 7, 14, 21, 49 and 84 days of storage the preparations were perfused with water and analyzed. In the recovered samples the following tests were carried out: the force causing fracture, the elongation caused by the mentioned force, the mass and the diameter of the carrier. Due to the degradation the size and the mechanical properties of the samples were decreased. The rate of the degradation was strongly dependent on the environment of the storage. The fastest degradation of the carriers were observed for compost and heavy soil, while the slowest biodegradation was observed for the samples placed in the water environment. The rate of biodegradation was also influenced by the Saccharomyces cerevisiae yeasts. The rate of biodegradation was faster in the samples containing yeast cells, than in the extrudates without the microorganisms.

Publisher

Year

Volume

15

Issue

3

Pages

110-114

Physical description

Dates

published
1 - 09 - 2013
online
20 - 09 - 2013

Contributors

  • University of Environmental and Life Sciences in Wroclaw, Department of Food Storage and Technology, Chelmonskiego 37/41 Str., 51-630 Wroclaw, Poland
  • University of Environmental and Life Sciences in Wroclaw, Department of Food Storage and Technology, Chelmonskiego 37/41 Str., 51-630 Wroclaw, Poland
author
  • University of Environmental and Life Sciences in Wroclaw, Department of Food Storage and Technology, Chelmonskiego 37/41 Str., 51-630 Wroclaw, Poland

References

  • 1. Rodziewicz, A. & Łaba W. (2008). Biodegradation of feather keratin by Bacillus cereus in pure culture and compost, EJPAU, 11 (2).
  • 2. Yano, Y. & Oikawa, H. & Satori, M. (2008). Reduction of lipids in fish meal prepared from fish waste by a yeast Yarrowialipolytica. Int. J. Food Microbiol. 121, 302-307. DOI: 10.1016/j.ijfoodmicro.2007.11.012.[Crossref][WoS]
  • 3. Chrzanowski, Ł. & Bielicka-Daszkiewicz, K. & Owsianiak, M. & Aurach, A. & Kaczorek, E. & Olszanowski, A. (2008). Phenol and n-alkanes (C12 and C16) utilization: influence on yeast cell surface hydrophobicity. World J. Microb. Biot. 24, 1943-1949. DOI:10.1007/s11274-008-9704-8.[WoS][Crossref]
  • 4. Ledin, M. (2000). Accumulation of metals by microorganisms - processes and importance for soil systems. Earth-Sci. Rev. 51, 1-31. DOI: 10.1016/S0012-8252(00)00008-8.[Crossref]
  • 5. Qing, W. & Shanfeng Z. (2008). The Application of Immobilized Microorganism Technology in Wastewater Treatment. Environmental Science and Management. 2008-11.
  • 6. Drożdż, W. & Boruczkowski, T. & Tomaszewska-Ciosk, E. & Boruczkowska, H. & Zdybel, E. (2010). The characteristics of extruded starch capsules for yeas immobilization. [Osiągnięcia naukowo-techniczne w słodownictwie i browarnictwie], Kraków 2010, 214-224.
  • 7. Drożdż, W. & Boruczkowski, T. & Tomaszewska-Ciosk, E. & Boruczkowska, H. (2010). Properties determination of capsules obtained from extruded starch to yeast immobilization (in Polish). Zeszyty Problemowe Postępów Nauk Rolniczych. Warszawa, 2010, 435-446.
  • 8. Leja, K. & Lewandowicz, G. (2010). Polymer Biodegradation and Biodegradable Polymers - a Review. Polish J. Environ. Stud. 19 (2) 255-266.
  • 9. Breslin, V.T. (1993). Degradation of starch-plastic composites in a municipal solid waste landfill. J. Environ. Polym. Degr. 1 (2), 127-141. DOI: 10.1007/BF01418206.[Crossref]
  • 10. Żuchowska, D. & Steller, R. & Meissner, W. (2007). Polymer composites liable on biodegradation. Polimery: 52, nr 7-8, 524-531 (in Polish).
  • 11. Doane, W.M. (1992). USDA Research on Starch-Based Biodegradable Plastics. Starch/ Stärke. 44 (8), 293-295. DOI: 10.1002/star.19920440805.[Crossref]
  • 12. Tomaszewska-Ciosk, E., Boruczkowski, T., Golachowski, A., Drożdż, W. & Boruczkowska H. (2013). Effect of ethanol addition on physical properties of extruded starch. Starch/ Stärke. 65 (3-4), 244-252. DOI: 10.1002/star.201200066.[Crossref]
  • 13. Tomaszewska-Ciosk, E., Golachowski, A., Drożdż, W., Boruczkowski, T., Boruczkowska, H. & Zdybel, E. (2012). Selected Properties of Single- and Double-Extruded Potato Starch, Pol. J. Food Nutr. Sci., 62 (3), 171-177. DOI: 10.2478/v10222-011-0034-4.[Crossref]
  • 14. Robak, M., Boruczkowski, T., Drożdż, W., Lazar, Z., Baranowska, M., Prządo, D. & Steininger, M. (2011). Application of Yarrowia lipolytica yeast for soil bioremediation polluted with crevice oil. Ochrona środowiska. 2, 27-33. (in Polish).
  • 15. Copinet, A., Legin-Copinet, E. & Erre, D. (2009). Compostability of Co-Extruded Starch/Poly(Lactic Acid) Polymeric Material Degradation in an Activated Inert Solid Medium. Materials. 2, 749-764. DOI:10.3390/ma2030749.[Crossref]
  • 16. Lützow, M.V., Kögel-Knabner, I., Ekschmitt, C., Matzner, E., Guggenberger, G., Marschner, B. & Flessa H. (2006). Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions - a review. Eur. J. Soil Sci. 57 (4), 426-445. DOI: 10.1111/j.1365- -2389.2006.00809.x.[Crossref]
  • 17. Chandra, R. & Rustgi, R. (1997). Biodegradation of maleated linear low-density polyethylene and starch blends. Polymer Degradation and Stability. 56 (2), 185-202.
  • 18. Kusiciel, S., Liber-Knać, A. & Zajchowski S. (2009). Biodegradation impact on properties of composites based on thermoplastic starch filled in with kenaf fibres or flour wood Czasopismo Techniczne 3 (106), 195-200 (in Polish).
  • 19. Garg, S. & Jana, A.K. (2007). Studies on the properties and characteristics of starch-LDPE blend films using cross- -linked, glycerol modified, cross-linked and glycerol modified starch. Eur. Polym. J. 43, 3976-3987. DOI: 10.1016/j.eurpolymj. 2007.06.030.[Crossref]
  • 20. De Graaf, R.A., Karman, A.P. & Janssen, L.P. (2003). Material properties and glass transition temperatures of different thermoplastic starches after extrusion processing. Starch/ Stärke. 55 (2), 80-86. DOI: 10.1002/star.200390020.[Crossref]
  • 21. Swanson, C.L., Shogren, R.L., Fanta, G.F. & Imam, S.H. (2000). Starch-Plastic Materials-Preparation, Physical Properties, and Biodegradability (A Review of Recent USDA Research). J. Environ. Polym. Degr. 1 (2), 155-166. DOI: 10.1007/ BF01418208. [Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_pjct-2013-0056
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.