Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 15 | 1 | 15-21

Article title

Multi-variant Sorption Optimization for the Uptake Of Pb(II) Ions by Jamun Seed Waste

Content

Title variants

Languages of publication

EN

Abstracts

EN
In the present study, jamun seed waste has been explored for the removal of Pb(II) ions from aqueous solution. The multi-variant sorption optimization was achieved by the factorial design approach. 99.91% of Pb(II) ions was removed from aqueous solution. The results predicted by the model were in good agreement with the experimental results (the values of R2 and R2adj. were found to be 99.89% and 99.95%, respectively). Langmuir and D-R isotherm studies were carried out to find adsorbent’s capacities (183.9 ± 0.31 mg/g and 184.5 ± 0.16 mg/g respectively), sorption free energy 13.17 ± 0.16 and RL values in the range of 0.05-0.77, suggested the favorable chemical and/or ion exchange nature of the sorption process. The FT-IR study was carried out for unloaded and Pb(II) ions loaded jamun seed, indicated, Pb(II) ions associated with nitrogen and oxygen of jamun seed containing moieties during the adsorption process. The proposed method was successfully validated and applied for the treatment of Pb(II) ions contaminating drinking water.

Publisher

Year

Volume

15

Issue

1

Pages

15-21

Physical description

Dates

published
1 - 03 - 2013
online
27 - 03 - 2013

Contributors

author
  • University of Sindh, Institute of Advance Research Studies in Chemical Sciences, Jamshoro, Pakistan
  • University of Sindh, Institute of Advance Research Studies in Chemical Sciences, Jamshoro, Pakistan
  • Northwest A & F University, Yangling, Shaanxi, China
  • Shah Abdul Latif University, Department of chemistry, Khairpur, Pakistan
  • University of Sindh, Institute of Advance Research Studies in Chemical Sciences, Jamshoro, Pakistan
  • University of Sindh, Institute of Advance Research Studies in Chemical Sciences, Jamshoro, Pakistan

References

  • 1. El-nady, F.E. & Atta, M.M. (1996). Toxicity and bioaccumulation of metals in some marine biota from Egyptian coastal waters. J. Environ. Sci. Health, A-31 (7), 1529-1545. DOI: 10.1080/10934529609376441.[Crossref]
  • 2. Biegańska, M. & Cierpiszewski, R. (2011). Utilization of agricultural and industrial wastes for metal removal from aqueous solutions. Polish j. Chem. Technol. 13(1), 20-22. DOI: 10.2478/v10026-011-0004-y.[WoS][Crossref]
  • 3. Abdel-Ghani, N.T., Hegazy, A.K. & El-Chaghaby, G.A. (2009). Typha domingensis leaf powder for decontamination of aluminium, iron, zinc and lead: Biosorption kinetics and equilibrium modeling. Int. J. Environ. Sci. Tech., 6 (2), 243-248.[Crossref]
  • 4. Resmi, G., Thampi, S.G. & Chandrakaran, S. (2010). Brevundimonas vesicularis: A novel bio-sorbent for removal of lead from wastewater. Int. J. Environ. Res. 4 (2) 281-288.
  • 5. Schneegurt, M.A., Jain, J.C., Menicucci, J.A., Brown, S.A.,Kemner, K.M., Garmfalo, D.F., Quallick, M.R., Neal, C.R. & Kulpa, C.F. (2001). Biomass byproducts for the remediation of wastewaters contaminated with toxic metals. Environ. Sci. Technol. 35 3786-3791. DOI: 10.1021/es010766e.[Crossref]
  • 6. Hasan, S.H., Srivastava, P. & Talat, M. (2009). Biosorption of Pb(II) from water using biomass of aeromonas hydrophila: Central composite design for optimization of process variables. J. Hazard. Mater. 168, 1155-1162. DOI: 10.1016/j. jhazmat.2009.02.142.[WoS][Crossref]
  • 7. Boudrahem, F., Aissani, B.F. & Soualah, A. (2011). Adsorption of lead(II)from aqueous solution by using leaves. J. Chem. Eng. Data 56, 1804-1812. DOI: org/10.1021/je100770j.
  • 8. Okoye, A.I., Ejikeme, P.M. & Onukwuli, O.D. (2010). Lead removal from wastewater using fluted pumpkin seed shell activated carbon: Adsorption modeling and kinetics, Int. J. Environ. Sci. Tech. 7 (4) 793-800.
  • 9. Mazhar, I. K., Saima, Q.M, Siyal, A.N. & Khuhawar, M.Y. (2011). Use of orange peel waste for arsenic remediation of drinking water. Waste Biomass Valorization 2, 423-433. DOI: 10.1007/s12649-011-9081-7.[Crossref]
  • 10. Munusamy, T., Lai, Y.L. & Lee, J.F. (2011). Fourier transform infrared spectroscopic analysis of fruit peels before and after the adsorption of heavy metal ions from aqueous solution. J. Chem. Eng. Data. 56, 2249-2255. DOI: 10.1021/je101262w.[Crossref][WoS]
  • 11. Blazquez, G., Martín, L.M.A., Tenorio, G. & Calero, M. (2011). Batch biosorption of lead(II) from aqueous solutions by olive tree pruning waste: Equilibrium, kinetics and thermodynamic study. Chem. Eng. J. 168, 170-177. DOI: 10.1016/j. cej.2010.12.059.[Crossref]
  • 12. Ana, B.P.M., Maria, I. A., Juan F.O., Victor, F.M., Jose, S. & Mercedes, L. (2010). Biosorption of Zn(II) by orange waste in batch and packed-bed systems. J. Chem. Technol. Biotechnol. 85, 1310-1318. DOI: 10.1002/jctb.2432.[Crossref][WoS]
  • 13. Ashtoukhy, E.S.Z.E.l., Amin, N.K. & Abdelwahab, O. (2008). Removal of lead (II) and copper (II) from aqueous solution using pomegranate peel as a new adsorbent. Desalination 223, 62-173. DOI: 10.1016/j.desal.0000.00.000.[Crossref]
  • 14. Milan, M., Milovan, P., Aleksandar, B., Aleksandra, Z. & Marjan, R. (2011). Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination 276, 53-59. DOI: 10.1016/j.desal.2011.03.013.[Crossref]
  • 15. Chand, R., Narimura, K., Kawakita, H., Ohto, K., Watari, T. & Inoue, K. (2009). Grape waste as a biosorbents for removing Cr(VI) from aqueous solution. J. Hazard. Mater. 163, 245-250. DOI: 10.1016/j.jhazmat.2008.06.084.[Crossref]
  • 16. Aderhold, D., Williams, C.J. & Edyvean, R.G.J. (1996). The removal of heavy-metal ions by seaweeds and their derivatives. Bioresour. Technol. 58(1), 1-6. DOI: org/10.1016/ S0960- 8524(96)00072-7.
  • 17. Dhakal, R.P., Ghimire, K.N., Inoue, K., Yano, M. & Makino, K. (2005). Acidic polysaccharide gels for selective adsorption of lead (II) ion. Sep. Purif. Technol. 42(3), 219-225.[Crossref]
  • DOI: org/10.1016/j.seppur.2004.07.016.
  • 18. Vandana, S., Stuti, T., Ajit, K.S. & Rashmi, S. (2007). Removal of lead from aqueous solutions using Cassia grandis seed gum-graft-poly(methylmethacrylate). J. Colloid Interf. Sci. 316, 224-232. DOI: 10.1016/j.jcis.2007.07.061.[Crossref]
  • 19. Ho, Y.S. (2005). Effect of pH on lead removal from water using tree fern as the sorbent. Bioresour. Technol. 96, 1292-1296. DOI: 10.1016/j.biortech.2004.10.011.[Crossref]
  • 20. Siyal, A.N., Saima, Q.M. & Khaskheli, M.I. (2012). Optimization and equilibrium studies of pb(ii) removal by grewiaasiatica seed: A factorial design approach. Pol. J. Chem. Technol. 14(1), 71-77. DOI: 10.2478/v10026-012-0062-9.[WoS][Crossref]
  • 21. Tan, I.A.W., Ahmad, A.L, & Hameed, B.H. (2008). Optimization of preparation conditions for activated carbons from coconut husk using response surface methodology. Chem. Eng. J. 137(3), 462-470. DOI: 10.1016/j.cej.2007.04.031.[Crossref]
  • 22. Javad, Z., Ali, S. & Mohammad, R.S. (2008).Optimization of Pb(II) biosorption by Robinia tree leaves using statistical design of experiments. Talanta 76, 528-532. DOI: 10.1016/j. talanta.2008.03.039.[Crossref][WoS]
  • 23. Chowdhury, P. & Ray R.C. (2007). Fermentation of Jamun (Syzgium cumini L.) Fruits to Form Red Wine. ASEANFood Journal 14 (1), 15-23.
  • 24. Sanchez, M.J., Beltran, H.J. & Carmona, M.C. (2011). Adsorbents from Schinopsis balansae: Optimization of significant variables. Industrial Crops and Products 33, 409-417. DOI: 10.1016/j.indcrop.2010.10.038.[Crossref][WoS]
  • 25. Cronje, K.J., Chetty, K., Carsky, M., Sahu, J.N. & Meikap, B.C. (2011). Optimization of chromium(VI) sorption potential using developed activated carbon from sugarcane bagasse with chemical activation by zinc chloride. Desalination 275, 276-284. DOI: 10.1016/j.desal.2011.03.019.[WoS][Crossref]
  • 26. Hasan, S.H., Srivastav, P. & Talat, M. (2009). Biosorption of Pb(II) from water using biomass of Aeromonas hydrophila: Central composite design for optimization of process variables. J. Hazard. Mater. 168, 1155-1162. DOI:10.1016/j. jhazmat.2009.02.142.[WoS][Crossref]
  • 27. Kim, H.M., Kim, J.G., Cho, J.D. & Hong, J.W. (2003). Optimization and characterization of U.V.-curable adhesives for optical communication by response surface methodology. Polym. Test. 22(8), 899-906. DOI: 10.1016/S0142-9418(03)00038-2.[Crossref]
  • 28. Zulkali, M.M., Ahmad, A.L. & Norulakmal, N.H. (2006). Oryza sativa L. husk as heavy metal adsorbent: optimization with lead as model solution, Bioresour. Technol. 97(1), 21-25.[Crossref]
  • 29. Socrates, G. (1980). Infrared characteristic group frequencies. Wiley-Interscience.
  • 30. Saima, Q.M., Hasany, S.M., Bhanger, M.I. & Khuhawar, M.Y. (2005). Enrichment of Pb(II) ions using phthalic acid functionalized XAD-16 resin as a sorbent. J. Colloid Interf. Sci. 291, 84-91. DOI: 10.1016/j.jcis.2005.04.112.[Crossref]
  • 31. Mahmut, O., Cengiz, S. & Sengil, I.A. (2006). Studies on synthesis, Characterization, and Metal Adsorption of Mimosa and Valonia Tannin Tesins. J. Appl. Polym. Sci. 102, 786-797.
  • DOI: 10.1002/app.23944.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_pjct-2013-0004
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.