Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 15 | 1 | 7-11

Article title

Factors Affecting the Performance of Double Chamber Microbial Fuel Cell for Simultaneous Wastewater Treatment and Power Generation

Content

Title variants

Languages of publication

EN

Abstracts

EN
Electricity generation from the readily biodegradable organic substrate (glucose) accompanied by decolorization of azo dye was investigated using a two-chamber microbial fuel cell (MFC). Batch experiments were conducted to study the effect of dye and substrate concentration on MFC performance. Electricity generation was not significantly affected by the azo dye at 300 mg/L, while higher concentrations inhibited electricity generation. The chemical oxygen demand (COD) removal and decolorization of dye containing wastewater used in the MFC were studied at optimum operation conditions in anode and cathode, 57% COD removal and 70% dye removal were achieved. This study also demonstrated the effect of different catholyte solutions, such as KMnO4 and K2Cr2O7 on electricity generation. As a result, KMnO4 solution showed the maximum electricity generation due to its higher standard reduction potential.

Publisher

Year

Volume

15

Issue

1

Pages

7-11

Physical description

Dates

published
1 - 03 - 2013
online
27 - 03 - 2013

Contributors

  • University Malaysia Pahang, Department of Chemical and Natural Resources Engineering, 26300 Gambang, Pahang, Malaysia
  • Shahjalal University of Science and Technology, Department of Chemical Engineering and Polymer Science, Sylhet-3114, Bangladesh
author
  • Shahjalal University of Science and Technology, Department of Chemical Engineering and Polymer Science, Sylhet-3114, Bangladesh
author
  • Shahjalal University of Science and Technology, Department of Chemical Engineering and Polymer Science, Sylhet-3114, Bangladesh
author
  • Shahjalal University of Science and Technology, Department of Chemical Engineering and Polymer Science, Sylhet-3114, Bangladesh
author
  • Shahjalal University of Science and Technology, Department of Chemical Engineering and Polymer Science, Sylhet-3114, Bangladesh

References

  • 1. Roy, R., Fakhruddin, A.N.M., Khatun, R., Islam, M.S., Ahsan, M.A., Neger, A.J.M.T. (2010). Characterization of Textile Industrial Effluents and its Effects on Aquatic Macrophytes and Algae. Bangladesh J. Sci. Ind. Res. 45 (1), 79-84. DOI: 10.3329/bjsir.v45i1.5187.[Crossref]
  • 2. Alaton, I.A., Balcioglu, I.A. & Bahnemann, D.W. (2002). Advanced oxidation of a reactive dye bath effluent: Comparison of O3, H2O2/UVC and TiO2/UVA processes. Water Res. 36, 1143-1154. DOI: 10.1016/S0043-1354(01)00335-9.[Crossref]
  • 3. Sarasa, J., Roche, M.P., Ormad, M.P., Gimeno, E., Puig, A. & L. Ovelleiro, J. (1998). Treatment of a wastewater resulting from dyes manufacturing with ozone and chemical coagulation. Water Res. 32, 2721-2727. DOI: 10.1016/S0043-1354(98)00030-X.[Crossref]
  • 4. Vandevivere, P.C., Bianchi, R. & Verstraete, W. (1998). Treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies. J. Chem. Technol. Biotechnol.72, 289-302. DOI: 10.1002/(SICI)1097-4660(199808)72: 4< 289::AID-JCTB905>3.0.CO;2-#.[Crossref]
  • 5. DosSantos, A.B., Cervantes, F.J. & Van-Lier, J.B. (2007). Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioressour. Technol . 98, 2369-2385. DOI: 10.1016/j.biortech.2006. 11. 013.[Crossref]
  • 6. Logan, B.E. & Regan, J.M. (2006). Microbial fuel cells: Challenges and applications. Environ. Sci. Technol. 41, 5172- -5180. DOI: 10.1021/es0627592.[Crossref]
  • 7. Park, D.H. & Zeikus, G. (2003). Improved fuel cell and electrode designs for the producing electricity from microbial degradation. Biotechnol. Bioeng. 81, 348-355. DOI: 10.1002/bit.10501.[Crossref]
  • 8. Rabaey, K., Boon, N., Siciliano, S.D., Verhaege, M. & Verstraete, W. (2004). Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 70 (5373-5382). DOI: 10.1128/AEM.70.9.5373-5382.2004.[Crossref]
  • 9. Mohan, S.V., Saravanan, R., Veer, S.R., Mohanakrishna, G. & Sarma, P.N. (2006). Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: Effect of catholyte. Bioresour. Technol. 99 (3), 596-600. DOI: 10.1016/j.biortech.2006.12.026.[Crossref]
  • 10. Pant, D., Bogaert, G.V., Diels, L. & Vanbroekhoven, K. (2010). A review for the substrate used in microbial fuel cell (MFCs) for sustainable energy production. Bioresour. Technol. 101 (6), 1533-1543. DOI: 10.1016/j.biortech.2009.10.017.[Crossref]
  • 11. Sun, J., Hu, Y.Y., Bi, Z. & Cao, Y. (2009). Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode singlechamber microbial fuel cell. Bioresour. Technol. 100, 3185-3192. DOI: 10.1016/j. biortech.2009.02.002.[WoS][Crossref][PubMed]
  • 12. Ieropoulos, I.A., Greenman, J., Melhuish, C. & Hart, J. (2005). Comparative study of three types of microbial fuel cell. Enzyme Microb. Tech. 37, 238-245. DOI: 10.1016/j.enzmictec.2005.03.006.[Crossref]
  • 13. APHA, (1998). Standard methods for the examination of water and wastewater (20th ed). Washington DC, USA: American Public Health Association.
  • 14. Bennetto, (1990). Electricity generation by microorganisms.
  • Biotechnology Education. 1 (4), 163-168.
  • 15. Logan, B.E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W. & Rabaey, K. (2006). Microbial fuel cells: Methodology and Technology. Environ. Sci. Technol. 40, 5181-5192. DOI: 10.1021/es0605016.[Crossref]
  • 16. Ren, Z.Y., Ward, T.E. & Regan, J.M. (2007). Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ. Sci Technol. 41 (13), 4781-4786. DOI: 10.1021/es070577h.[WoS][Crossref]
  • 17. Hideki, S., Takaaki, N., Tokita, Y., Hatazawa, T., Tokuji, I., Tsujimura, S. & Kano, K. (2009). A high-power glucose/ oxygen biofuel cell operating under quiescent conditions. EnergyEnviron. Sci. 2, 133-138. DOI: 10.1039/B809841G.[Crossref]
  • 18. Zhao, F., Hamisch, F., Schroder, U., Scholz, F., Bogdanoff, P. & Hermann, I. (2005). Application of pyrolysed iron (II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem. Commun. 7, 1405-1410. DOI: 10.1016/j.elecom.2005.09.032.[Crossref]
  • 19. Li, Z.J., Zhang, X.W., Zeng, Y.X. & Lei, L.C. (2009). Electricity Production by an overflow-type wetted wall microbial fuel cell. Bioresour. Technol.100, 2551-2555. DOI: 10.1016/j. biortech.2008.12.018.[Crossref]
  • 20. You, S., Zhao, Q., Zhang, J., Jiang, J. & Zhao, S. (2006). A microbial fuel cell using permanganate as the cathodic electron acceptor. J. Power Sour. 162, 1409-1415. DOI: 10.1016/j. jpowsour.2006.07.063.[Crossref]
  • 21. Pandey, A., Singh, P. & Iyengar, L. (2007). Bacterial decolorization and degradation of azo dyes. Int. Biodeterior. Biodegrad. 59, 73-84. DOI: 10.1016/j.ibiod.2006.08.006.[Crossref][WoS]
  • 22. Sani, R.K. & Banerjee, U.C. (1999). Decolorization of triphenylmethane dyes and textile and dye-stuff effluent by Kurthia sp. Enzyme Microb. Technol. 24, 433-437. DOI: 10.1016/S0141-0229(98)00159-8.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_pjct-2013-0002
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.