Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 1 | 1 |

Article title

Extension of solid immersion lens technology to
super-resolution Raman microscopy

Content

Title variants

Languages of publication

EN

Abstracts

EN
Scanning Near-Field Optical Microscopy
(SNOM) has developed during recent decades into a
valuable tool to optically image the surface topology of
materials with super-resolution. With aperture-based
SNOM systems, the resolution scales with the size of the
aperture, but also limits the sensitivity of the detection
and thus the application for spectroscopic techniques
like Raman SNOM. In this paper we report the extension
of solid immersion lens (SIL) technology to Raman SNOM.
The hemispherical SIL with a tip on the bottom acts as
an apertureless dielectric nanoprobe for simultaneously
acquiring topographic and spectroscopic information.
The SIL is placed between the sample and the microscope
objective of a confocal Raman microscope. The lateral
resolution in the Raman mode is validated with a
cross section of a semiconductor layer system and, at
approximately 180 nm, is beyond the classical diffraction
limit of Abbe.

Publisher

Year

Volume

1

Issue

1

Physical description

Dates

online
22 - 11 - 2014
received
22 - 6 - 2014
accepted
8 - 10 - 2014

Contributors

  • Process Analysis
    & Technology, Reutlingen Research Institute, Reutlingen University,
    Alteburgstr. 150, D-72762 Reutlingen
author
  • Process Analysis
    & Technology, Reutlingen Research Institute, Reutlingen University,
    Alteburgstr. 150, D-72762 Reutlingen
  • Process Analysis
    & Technology, Reutlingen Research Institute, Reutlingen University,
    Alteburgstr. 150, D-72762 Reutlingen
  • Process Analysis
    & Technology, Reutlingen Research Institute, Reutlingen University,
    Alteburgstr. 150, D-72762 Reutlingen
  • Institute for Physical and Theoretical Chemistry,
    Auf der Morgenstelle 18, University of Tübingen, D-72076 Tübingen

References

  • [1] Mansfield, S. M.; Kino, G. S., Solid immersion microscope.Applied Physics Letters 1990, 57 (24), 2615-2616.[Crossref]
  • [2] Mansfield, S. M.; Studenmund, W. R.; Kino, G. S.; Osato, K.,High-numerical-aperture lens system for optical storage. Opticsletters 1993, 18 (4), 305-307.[Crossref]
  • [3] Matsuo, S.; Misawa, H., Direct measurement of laser powerthrough a high numerical aperture oil immersion objective lensusing a solid immersion lens. Review of Scientific Instruments2002, 73 (5), 2011-2015.[Crossref]
  • [4] Milster, T. D.; Akhavan, F.; Bailey, M.; Erwin, J. K.; Felix, D. M.;Hirota, K.; Koester, S.; Shimura, K.; Zhang, Y., Super-Resolutionby Combination of a Solid Immersion Lens and an Aperture.Japanese Journal of Applied Physics 2001, 40 (Part 1, No. 3B),1778-1782.[Crossref]
  • [5] Chau, Y.-F.; Yang, T.-J.; Tsai, D. P., Near-field optics simulationof a solid immersion lens combining with a conical probe and ahighly efficient solid immersion lens-probe system. Journal ofApplied Physics 2004, 95 (7), 3378-3384.[Crossref]
  • [6] Ippolito, S. B.; Goldberg, B. B.; Unlu, M. S., Theoretical analysisof numerical aperture increasing lens microscopy. Journal ofApplied Physics 2005, 97 (5), 053105-12.[Crossref]
  • [7] Bischoff, J.; Brunner, R., Numerical investigation of theresolution in solid immersion lens systems. Proceedings ofSPIE 2000, 4099 (1), 235.
  • [8] Milster, T. D.; Jo, J. S.; Hirota, K., Roles of Propagating andEvanescent Waves in Solid Immersion Lens Systems. AppliedOptics 1999, 38 (23), 5046-5057.[Crossref]
  • [9] Ippolito, S. B.; Terada, H., Annular illumination and collectionin solid immersion, In International Symposium for Testingand Failure Analysis ISTFA, San Jose, CA, ASM InternationalMaterials Park, Ohio: San Jose, CA, 2009; pp 60-64.
  • [10] Ostertag, E.; Merz, T.; Kessler, R. W., Multimodal spatiallyresolved near-field scattering and absorption spectroscopy.Proceedings of SPIE 2012, 8231, 82310A-1-82310A-10.
  • [11] Koyama, K.; Yoshita, M.; Baba, M.; Suemoto, T.; Akiyama, H.,High collection efficiency in fluorescence microscopy with asolid immersion lens. Applied Physics Letters 1999, 75 (12),1667-1669.[Crossref]
  • [12] Kim, M.-S.; Scharf, T.; Brun, M.; Olivier, S.; Nicoletti, S.;Herzig, H. P., Advanced optical characterization of micro solidimmersion lens. Proceedings of SPIE 2012, 8430, 84300E-1-84300E-10.
  • [13] Kim, M.-S.; Scharf, T.; Haq, M. T.; Nakagawa, W.; Herzig, H. P.,Subwavelength-size solid immersion lens. Optics letters 2011,36 (19), 3930.[Crossref]
  • [14] R. Brunner; Dobschal, H. J., Diffractive Optical Lenses inImaging Systems–High-Resolution Microscopy and DiffractiveSolid Immersion Systems. In Optical Imaging and Microscopy:Techniques and Advanced Systems, 2nd edition ed.; Török, P.;Kao, F.-J., Eds. Springer: Heidelberg, 2007; pp 45-70.
  • [15] Frey, H. G.; Bolwien, C.; Brandenburg, A.; Ros, R.; Anselmetti,D., Optimized apertureless optical near-field probes with 15 nmoptical resolution. Nanotechnology 2006, 17, 3105-3110.
  • [16] Goldberg, B. B.; Ippolito, S. B.; Novotny, L.; Liu, Z.; Ünlü, M.S., Immersion Lens Microscopy of Photonic Nanostructuresand Quantum Dots. IEEE Journal of Selected Topics in QuantumElectronics 2002, 8 (5), 1051-1059.[Crossref]
  • [17] Terris, B.; Mamin, H. J.; Rugar, D.; Studenmund, W.; Kino, G. S.,Near-field optical data storage using a solid immersion lens.Applied Physics Letters 1994, 65 (4), 388-390.[Crossref]
  • [18] Daiichi, K.; Takeshi, K.; Ryuji, S.; Haruki, T.; Yoshimichi,T.; Kiyoshi, O., Near-Field Optical Recording Using Solid Immersion Lens for High-Density Flexible Optical Disks.Japanese Journal of Applied Physics 2013, 52 (9S2), 09LG01.
  • [19] Park, K.-S.; Kim, T.; Lee, W.-S.; Joe, H.-E.; Min, B.-K.; Park,Y.-P.; Yang, H.; Kang, S.-M.; Park, N.-C., Application of SolidImmersion Lens-Based Near-Field Recording Technology toHigh-Speed Plasmonic Nanolithography. Japanese Journal ofApplied Physics 2012, 51, 08JF01-08JF07.
  • [20] Park, N.-C.; Young-Pil, P.; Park, K.-S.; Hyunseok, Y., Applicationsof Next Generation Optical Data Storage Technologies. IEEETransactions on Magnetics 2011, 47 (3), 669-678.[Crossref]
  • [21] Ishimoto, T.; Aki, Y.; Kondo, T.; Kishima, K.; Yamamoto, K.;Yamamoto, M., Near-Field Optical Head for Disc MasteringProcess. Japanese Journal of Applied Physics 2000, 39 (Part 1,No. 2B), 800-805.
  • [22] Ippolito, S. B.; Goldberg, B. B.; Unlu, M. S., High spatialresolution subsurface microscopy. Applied Physics Letters2001, 78 (26), 4071-4073.[Crossref]
  • [23] Dozor, D. M.; Kim, Y.; Tumidajski; Fancher, G.; Salvestrini, K.;Holt, d.; DeWitt, R. Inspection system ultilizing solid immersionlenses. Patent US020120092655A1, 2012.
  • [24] Merz, T.; Kessler, R. W., Spectroscopic Imaging in the NearField with an Apertureless Solid Immersion Lens Microscope.Proceedings of SPIE 2007, 6631, 66310V-1 - 6631V-10.
  • [25] Wu, Q.; Ghislain, L. P.; Elings, V. B., Imaging with solidimmersion lenses, spatial resolution, and applications.Proceedings of the IEEE 2000, 88 (9), 1491 - 1498.
  • [26] Karrai, K.; Lorenz, X.; Novotny, L., Enhanced reflectivity contrastin confocal solid immersion lens microscopy. Applied PhysicsLetters 2000, 77 (21), 3459-3461.[Crossref]
  • [27] Wildanger, D.; Patton, B. R.; Schill, H.; Marseglia, L.; Hadden,J. P.; Knauer, S.; Schönle, A.; Rarity, J. G.; O’Brien, J. L.; Hell,S. W.; Smith, J. M., Solid Immersion Facilitates FluorescenceMicroscopy with Nanometer Resolution and Sub-ÅngströmEmitter Localization. Advanced Materials 2012, 24 (44),OP309-OP313.
  • [28] Ghislain, L. P.; Elings, V. B.; Crozier, K. B.; Manalis, S. R.;Minne, S. C.; Wilder, K.; Kino, G. S.; Quate, C. F., Near-fieldphotolithography with a solid immersion lens. Applied PhysicsLetters 1999, 74 (4), 501-503.[Crossref]
  • [29] Kino, G., Applications and theory of the solid immersion lens.Proceedings of SPIE 1999, 3609 (1), 56-65.
  • [30] Vollmer, M.; Giessen, H.; Stolz, W.; Rühle, W. W.; Ghislain, L.;Elings, V., Ultrafast nonlinear subwavelength solid immersionspectroscopy at T=8 K. Applied Physics Letters 1999, 74 (13),1791-1793.[Crossref]
  • [31] Hartschuh, A.; Sánchez, E. J.; Xie, X. S.; Novotny, L.,High-Resolution Near-Field Raman Microscopy of Single-WalledCarbon Nanotubes. Physical Review Letters 2003, 90 (9),095503.[Crossref]
  • [32] Lerman, G. M.; Israel, A.; Lewis, A., Applying solid immersionnear-field optics to Raman analysis of strained silicon thinfilms. Applied Physics Letters 2006, 89 (22), 223122.[Crossref]
  • [33] Athalin, H.; Lefrant, S., Optically addressable selectivenanovolume Raman spectroscopy of nanoparticles. Journal ofNanoparticle Research 2005, 7 (1), 89-93.[Crossref]
  • [34] Desmedt, A.; Talaga, D.; Bruneel, J. L., Enhancement of theRaman Scattering Signal Due to a Nanolens Effect. AppliedSpectroscopy 2007, 61 (6), 621-623.[Crossref]
  • [35] Poweleit, C. D.; Gunther, A.; Goodnick, S.; Menéndez, J., Ramanimaging of patterned silicon using a solid immersion lens.Applied Physics Letters 1998, 73 (16), 2275-2277.[Crossref]
  • [36] Brunner, R.; Burkhardt, M.; Pesch, A.; Sandfuchs, O.; Ferstl,M.; Hohng, S.; White, J. O., Diffraction-based solid immersionlens. Journal of the Optical Society of America A 2004, 21 (7),1186-1191.[Crossref]
  • [37] Ghislain, L. P.; Elings, V. B., Near-field scanning solidimmersion microscope. Applied Physics Letters 1998, 72 (22),2779-2781.[Crossref]
  • [38] Yoshita, M.; Koyama, K.; Baba, M.; Akiyama, H., Fourierimaging study of efficient near-field optical coupling in solidimmersion fluorescence microscopy. Journal of Applied Physics2002, 92 (2), 862-865.[Crossref]
  • [39] Zayats, A.; Richards, D., Nano-Optics and Near-Field OpticalMicroscopy. Artech House, Inc.: Boston, 2009.
  • [40] Hecht, B.; Sick, B.; Wild, U. P.; Deckert, V.; Zenobi, R.; Martin,O. J. F.; Pohl, D. W., Scanning near-field optical microscopy withaperture probes: Fundamentals and applications. The Journalof Chemical Physics 2000, 112 (18), 7761-7774.[Crossref]
  • [41] Knoll, B.; Keilmann, F., Electromagnetic fields in the cutoffregime of tapered metallics waveguides. Optics Communications1999, 162, 177-181.
  • [42] Ostertag, E.; Merz, T. R.; Kessler, R. W., Imaging beyonddiffraction limit - prospectives for the NIR. Proc. of the 15thInternational Conference on Near Infared Spectroscopy NIRS2012 2013, 41-46.
  • [43] Naturwissenschaftliches und Medizinisches Institut (NMI) ander Universität Tübingen, http://www.nmi.de.
  • [44] Ghislain, L. P.; Elings, V. B. Scanning probe optical microscopeusing a solid immersion lens. Patent WO98/58288, 1998.
  • [45] Bundesanstalt für Materialforschung, http://www.rm-certificates.bam.de/de/rm-certificates_media/rm_cert_layer_and_surface/bam_l200e.pdf.
  • [46] Blakemore, J. S., Semiconducting and other major propertiesof gallium arsenide. Journal of Applied Physics 1982, 53 (10),R123-R181.[Crossref]
  • [47] Burns, G.; Dacol, F. H.; Wie, C. R.; Burstein, E.; Cardona, M.,Phonon shifts in ion bombarded GaAs: Raman measurements.Solid State Communications 1987, 62 (7), 449-454.[Crossref]
  • [48] Chang, Y.-C.; Ren, S.-F.; Wen, G., Raman spectra of GaAs-AlxGa1-xAs superlattices. Superlattices and Microstructures 1993, 13(2), 165-168.[Crossref]
  • [49] Johnston, W. D. J.; Kaminow, I. P., Contributions to OpticalNonlinearity in GaAs as Determined from Raman ScatteringEfficiencies. Physical Review 1969, 188 (3), 1209-1211.[Crossref]
  • [50] Mooradian, A.; Wright, G. B., First order Raman effect in III-Vcompounds. Solid State Communications 1966, 4, 431-434.[Crossref]
  • [51] Kubota, K.; Nakayama, M.; Katoh, H.; Sano, N., Characterizationof GaAs-AlAs superlattices by laser Ramanspectroscopy. Solid State Communications 1984, 49 (2),157-159.[Crossref]
  • [52] Sood, A. K.; Menéndez, J.; Cardona, M.; Ploog, K., Interfacevibrational modes in GaAs-AlAs superlattices. Physical ReviewLetters 1985, 54 (19), 2115-2118.[Crossref]
  • [53] Fauchet, P. M.; Campbell, I. H., Raman spectroscopy oflow-dimensional semiconductors. Critical Reviews in SolidState and Materials Sciences 1988, 14 (Sup1), S79-S101.
  • [54] Deutsches Institut für Normung, DIN ISO 9334:2008-08 Opticsand photonics - Optical transfer function - Definitions andmathematical relationships. 2008.
  • [55] Senoner, M.; Wirth, T.; Unger, W. E. S., Imaging surfaceanalysis: Lateral resolution and its relation to contrast andnoise. Journal of Analytical Atomic Spectrometry 2010, 25 (9),1440-1452.[Crossref]
  • [56] Cox, G.; Sheppard, C. J. R., Practical limits of resolution inconfocal and non-linear microscopy. Microscopy Research andTechnique 2004, 63 (1), 18-22.[Crossref]
  • [57] Sheppard, C. J. R.; Choudhury, A., Image Formation in theScanning Microscope. Optica Acta: International Journal ofOptics 1977, 24 (10), 1051-1073.[Crossref]
  • [58] Cox, I. J.; Sheppard, C. J. R.; Wilson, T., Super-resolution byconfocal fluorescent microscopy. Optik 1982, 60 (4), 391-396.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_nansp-2014-0001
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.