Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 1 | 1 |

Article title

Focused Ion Beam nano-patterning from
traditional applications to single ion implantation
perspectives

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this article we review some fundamentals of
the Focused Ion Beam (FIB) technique based on scanning
finely focused beams of gallium ions over a sample to
perform direct writing. We analyse the main limitations
of this technique in terms of damage generation or local
contamination and through selected examples we discuss
the potential of this technique in the light of the most
sensitive analysis techniques. In particular we analyse
the limits of Ga-FIB irradiation for the patterning of III-V
heterostructures, thin magnetic layers, artificial defects
fabricated onto graphite or graphene and atomically thin
suspended membranes. We show that many of these earlypointed
“limitations” with appropriate attention and
analysis can be valuable for FIB instrument development,
avoided, or even turned into decisive advantages. Such
new methods transferable to the fabrication of devices
or surface functionalities are urgently required in the
emerging nanosciences applications and markets.

Publisher

Journal

Year

Volume

1

Issue

1

Physical description

Dates

published
1 - 1 - 2014
received
13 - 2 - 2014
online
26 - 6 - 2014
accepted
8 - 5 - 2014

Contributors

  • LPN – CNRS, Route de
    Nozay, Marcoussis, France

References

  • [1] Yamamoto M., Sato M., Kyogoku H., Aita K., Nakagawa Y.,Yasaka A., et al., Submicron Mask Repair Using Focused IonBeam Technology, Proc. SPIE 0632, Electron-Beam, X-Ray, andIon-Beam Technology for Submicrometer Lithographies V, 97(June 30, 1986); doi:10.1117/12.963674
  • [2] Reyntjens S., Puers R., A review of focused ion beamapplications in microsystem technology, J. Micromech.Microeng., 2001, 11, 287–300.[Crossref]
  • [3] Ziegler J., SRIM - the stopping and range of ions in matter,http://www.srim.org/.
  • [4] Levi-Setti R., Crow G., Wang Y.L., Parker N.W., Mittleman R.,High-Resolution Scanning-Ion-Microprobe Study of Graphiteand its Intercalation Compounds, Phys. Rev. Lett., 1985, 54,2615.[Crossref]
  • [5] Orloff J., Focused Ion Beams, Sci. Am. Intl. Ed., 1991, 265,74-79.
  • [6] Seliger R.L., Kubena R.L., Olney R.D., Ward J.W., Wang V.,High-resolution, ion-beam processes for microstructurefabrication, J. Vac. Sci. Technol., 1979, 16, 1610.[Crossref]
  • [7] Beale M.I.J., Broughton C., Deshmukh V.G.I., Focused ionbeams for lithography and direct doping in VLSI devicefabrication, Microelectron. Eng., 1986, 4, 233-249.[Crossref]
  • [8] Lehrer et coll., EIPBN 2001, Washington, 2001.
  • [9] Gamo K., Miyake Y., Yuba Y., Namba S., Kasahara H., SawaragiH., Aihara R, Defect study in GaAs bombarded by low-energyfocused ion beams, J. Vac. Sci. Technol. B, 1988, 6, 2124.[Crossref]
  • [10] Hirayama Y., Susuki Y., Okamoto H., Compositional disorderingand very-fine lateral definition of GaAs-AlGaAs superlattices byfocused Ga ion beams, Surf. Sci., 1986, 174, 98-104.
  • [11] Yamamoto T., Yanagisawa J., Gamo K., Takaoka S., MuraseK., Estimation of damage induced by focused Ga ion beamirradiation, Jpn. J. Appl. Phys., 1993, 32, 6268-6273.
  • [12 Kazazis D., Genner U., Gierak J. et al, to be presented at EIPBNconference 2014
  • [13] Gierak J., Focused ion beam technology and ultimateapplications, Semicond. Sci. Technol., 2009, 24, 043001.[Crossref]
  • [14] Orloff J., Swanson L.W., Utlaut M., Fundamental limits toimaging resolution for focused ion beams, J. Vac. Sci. Technol.B, 1996, 14, 3759-3763.[Crossref]
  • [15] Kubena R.L., Ward J.W., Stratton F.P., Joyce R.J., Atkinson G.M.,A low magnification focused ion beam system with 8 nm spotsize, J. Vac. Sci. Technol. B, 1991, 9, 3079.[Crossref]
  • [16] Vieu C., Ben Assayag G., Gierak J., Observation and simulationof focused ion beam induced damage, Nucl. lnstr. Meth. Phys.Res., 1994, 93, 439-446.
  • [17] Orloff J., Comparison of optical design approaches for use withliquid metal ion sources, J. Vac. Sci. Technol. B, 1987, 5, 175.[Crossref]
  • [18] Kruit P., Jiang X.R., Influence of Coulomb interactions on choiceof magnification, aperture size, and source brightness in a twolens focused ion beam column, J. Vac. Sci. Technol. B, 1996, 14,1635.[Crossref]
  • [19] Smith N.S., Tesch P.P., Martin N.P., Boswel R.W., New Ion Probefor Next Generation FIB, SIMS, and Nano-Ion Implantation,Microscopy Today, 2009, 17, 18-22.
  • [20] Carleson, Routh, Kelley, Young, High-Throughput, Site-SpecificInspection of 3D Interconnects using Plasma FIB Technology,3D-IC Metrology Workshop, San Francisco CA USA, July 11,2012.
  • [21] Levi-Setti R., Proton scanning microscopy: Feasibility andpromise, in Scanning Electron Microscopy/1974, Johari O.,Corvin I., ed., IIT Research Institute, Chicago, Ill., 1974, 125-134.
  • [22] Müller E.W., Das Feldionenmikroskop, Zeitschrift für Physik,1951, 131, 136-142.
  • [23] Suvorov V.G., Forbes R.G., Theory of minimum emission currentfor a non-turbulent liquid-metal ion source, Microelectron.Eng., 2004, 73-74, 126-131.
  • [24] Van Es J.J., Gierak J., Forbes R.G., Suvorov V.G., Van den BergheT., Dubuisson P., et al., An improved gallium liquid metal ionsource geometry for nanotechnology, Microelectron. Eng.,2004, 73-74, 132-138.
  • [25] Sudraud P., Ben Assayag G., Bon M., Focused-ion-beammilling, scanning-electron microscopy, and focused-dropletdeposition in a single microcircuit surgery tool, J. Vac. Sci.Technol. B, 1988, 6, 234.[Crossref]
  • [26] Gnauck P., Vacuum’s Best 2005: Special Issue of “Vacuum inResearch and Practice”, 2005.
  • [27] Thoms S., Electron Beam Lithography, in NanofabricationHandbook, Cabrini S., Kawata S., ed., CRC Press, 2012.
  • [28] Gierak J., Jede R., Hawkes P., Nanolithography with Focused IonBeams, in Nanofabrication Handbook, Cabrini S., Kawata S.,ed., CRC Press, 2012.
  • [29] NanoFIB 2004, EC research project See: ftp://ftp.cordis.europa.eu/pub/nanotechnology/docs/n_s_nanofib_27052002.pdf
  • [30] Gierak J., Septier A., Vieu C., Design and realization of a veryhigh-resolution FIB nanofabrication instrument, Nucl. Instr. andMeth. A, 1999, 427, 91-98.
  • [31] Lencova B., http://www.lencova.com/; Munro E., http://www.mebs.co.uk/.
  • [32] Sugimoto Y., Akita K., Taneya M., Wawanishi H., Aihara R.,Watahiki T., A multichamber system for in situ lithographyand epitaxial growth of GaAs, Rev. Sci. Instrum., 1991, 62,1828-1835.[Crossref]
  • [33] Chen C.H., Green D.L., Hu E.L., Ibbestson J.P., Petroff P.M.,Radiation enhanced diffusion of low energy ion-induceddamage, Appl. Phys. Lett., 1996, 69, 58-60.[Crossref]
  • [34] Ben Assayag G., Vieu C., Gierak J., Sudraud P., Corbin A., Newcharacterization method of ion current-density profile based ondamage distribution of Ga+ focused-ion beam implantation inGaAs, J. Vac. Sci. Technol. B, 1993, 11, 2420-2426.[Crossref]
  • [35] Gierak J., Ben Assayag G., Schneider M., Vieu C., Marzin J.Y.,3D defect distribution induced by focused ion beam irradiationat variable temperatures in a GaAsGaAlAs multi quantum wellstructure, Microelectron. Eng., 1996, 30, 253-256.
  • [36] Chappert C., Bernas H., Ferre J., Kottler V., Jamet J.P., ChenY., et al., Planar Patterned Magnetic Media Obtained by IonIrradiation, Science, 1998, 280, 1919-1922.
  • [37] Johnson W.L., Cheng Y.T., Van Rossum M., Nicolet M., Whenis thermodynamics relevant to ion-induced atomic rearrangementsin metals?, Nucl. Instrum. Methods Phys. Res. B, 1985,7, 657-665.[Crossref]
  • [38] Albrecht M., Rettner C.T., Moser A., Best M.E., Terris B.D.,Recording performance of high-density patterned perpendicularmagnetic media, Appl. Phys. Lett., 2002, 81, 2875-2877.
  • [39] Ruotolo A., Wiebel S., Jamet J.P., Vernier N., Pullin D., GierakJ., Ferré J., Magneto-optical microscopy as a favouritetool to probe focused ion beam patterning at low dose,Nanotechnology, 2006, 17, 3308–3312.[Crossref]
  • [40] Rau N., Stratton F., Fields C., Ogawa T., Neureuther A., KubenaR., Willson G., Shot-noise and edge roughness effects in resistspatterned at 10 nm exposure, J. Vac. Sci. Technol. B, 1998, 16,3784.
  • [41] Mélinon P., Hannour A., Bardotti L., Prével B., Gierak J., BourhisE., et al., Ion beam nanopatterning in graphite: characterizationof single extended defects, Nanotechnology, 2008, 19,235305.[Crossref][PubMed]
  • [42] Perez A., Bardotti L., Prevel B., Jensen P., Treilleux M., MélinonP., et al., Quantum-dot systems prepared by 2D organizationof nanoclusters preformed in the gas phase on functionalizedsubstrates, New J. Phys., 2002, 4, 76.
  • [43] Prével B., Benoit J.M., Bardotti L., Mélinon P., Ouerghi A.,Lucot D., et al., Nanostructuring graphene on SiC by focusedion beam: effect of the ion fluence, Appl. Phys. Lett., 2011, 99,083116.[Crossref]
  • [44] Carleson, Routh, Kelley, Young, 3D-IC Metrology Workshop, SanFrancisco CA USA July 11, 2012 www.sematech.org/meetings/archives/
  • [45] Biance A.L., Gierak J., Bourhis E., Madouri A., Lafosse X.,Patriarche G., et al., Focused ion beam sculpted membranes fornanoscience tooling, Microelectron. Eng., 2006, 83, 1474-1477.[Crossref]
  • [46] Gierak J., Madouri A., Biance A.L., Bourhis E., Patriarche G.,Ulysse C., et al., Sub-5 nm FIB direct patterning of nanodevices,Microelectron. Eng., 2007, 84, 779-783.
  • [47] Geim A.K., Graphene: status and prospects, Science, 2009,324, 1530–1534.
  • [48] Garaj S., Hubbard W., Reina A., Kong J., Branton D.,Golovchenko J.A., Graphene as a subnanometre trans-electrodemembrane, Nature, 2010, 467, 190-193.
  • [49] Lucot D., Gierak J., Ouerghi A., Bourhis E., Faini G., MaillyD., Deposition and FIB direct patterning of nanowires andnanorings into suspended sheets of graphene, Microelectron.Eng., 2009, 86, 882-884.[Crossref]
  • [50] Hemamouche A., Morin A., Bourhis E., Toury B., Tarnaud E.,Mathé J., et al., FIB patterning of dielectric, metallized andgraphene membranes: A comparative study, Microelectron.Eng., 2014, 121, 87-91.[Crossref]
  • [51] Li W., Liang L., Zhao S., Zhang S., Xue J., Fabrication ofnanopores in a graphene sheet with heavy ions: A moleculardynamics study, J. Appl. Phys., 2013, 114, 234304; Kotakoski J.,Lehtinen O.J., Nanomachining Graphene with Ion Irradiation,MRS Proceedings 1259E, 2010, 1259-S18-02.
  • [52] Nguyen C.T., Balocchi A., Lagarde D., Zhang T.T., Carrère H.,Mazzucato S., et al., Fabrication of an InGaAs spin filter byimplantation of paramagnetic centers, Appl. Phys. Lett., 2013,103, 052403.
  • [53] McCallum J.C., Jamieson D.N., Yang C., Alves A.D., JohnsonB.C., Hopf T., et al., Single-Ion Implantation for theDevelopment of Si-Based MOSFET Devices with QuantumFunctionalities, Adv. Mater. Sci. Eng., 2012, 2012, 272694.doi:10.1155/2012/272694[Crossref]
  • [54] Aharonovich I., Greentree A.D., Prawer S., Diamond photonics,Nature Photon., 2011, 5, 397-405.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_nanofab-2014-0004
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.