Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 1 | 1 |

Article title

Structural and magnetic studies on praseodymium
and transition-metal co-substituted BiFeO3 ceramics

Content

Title variants

Languages of publication

EN

Abstracts

EN
Bulk ceramic compositions of BiFeO3 (BFO),
(Bi0.90Pr0.10)FeO3 and (Bi0.90Pr0.10)Fe0.95T0.05O3 [T=Cu,
Co] were synthesized using conventional solid-state reaction
route. Confirmation of phase formation was established
by x-ray diffraction technique. The relative shifts in
the most intense peaks of the pristine BFO sample indicated
the substitution of rare-earth and transition metal
ions at their respective sites. The grain size decreased with
the A- and B-site substitution in BFO. In Raman spectra,
Pr and Co/Cu co-substituted BFO samples exhibit hardening
of the low-frequency modes. It is also observed that the
line-widths of Raman peaks are broadened as compared
with those of the pure sample. The saturation magnetization
enhanced with Pr and Co co-substitution in BFO with
a value of 1.5 emu/g.

Publisher

Year

Volume

1

Issue

1

Physical description

Dates

online
24 - 3 - 2015

Contributors

  • Department of Materials
    & Ceramic Engineering, CICECO, University of Aveiro, Portugal
author
  • Department of Physics, Central University of Rajasthan,
    Rajasthan, India
  • Department of Physics & Engineering Physics,
    Tulane University, New Orleans, USA
    and Department of Physics and Institute of Functional Nanomaterials,
    University of Puerto Rico, San Juan, USA
  • Department of Physics, University of Aveiro,
    Portugal
author
  • Department of Materials & Ceramic Engineering,
    CICECO, University of Aveiro, Portugal
  • Department of Physics and Institute of Functional
    Nanomaterials, University of Puerto Rico, San Juan, USA

References

  • [1] M. Fiebig, J. Phys. D: Appl. Phys. 38 (2005) R123.
  • [2] W. Eerenstein, N. D. Mathur and J. F. Scott, Nature 442 (2006)759.
  • [3] T. Zhao et al, Nat. Mater., 5 (2006) 823.
  • [4] V. R. Palker, J. John and R. Pinto, Appl. Phys. Lett., 80 (2002)1628.
  • [5] H. Uchida, R. Ueno, H. Funakubo and S. Kodo, J. Appl. Phys., 100(2006) 014106.
  • [6] D. H. Kim, H. N. Lee, M. D. Biegalski and H. M. Christen, Appl.Phys. Lett., 91 (2007) 042906.
  • [7] L. Hongri and S. Yuxia, J. Phys. D: Appl. Phys., 40 (2007) 7530.
  • [8] M. Azuma, H. Kanda, A. A. Belik, Y. Shimakawa and M. Takano,J. Magn. Magn. Mater., 310 (2007) 1177.
  • [9] S. Yasui, H. Uchida, H. Nakai, K. Nishida, H. Funakubo and S.Koda, Appl. Phys. Lett. 91 (2007) 022906.
  • [10] H. Naganuma, J. Miura and S. Okamura, Appl. Phys. Lett., 93(2008) 052901.
  • [11] P. Kharel, S. Talebi, B. Ramachandran, A. Dixit, V. M. Naik, M. B.Sahana, C. Sudakar, R. Naik, M. S. R. Rao and G. Lawes, J. Phys.:Condens. Matter., 21 (2009) 036001.
  • [12] S. Yasui, H. Uchida, H. Nakai, K. Nishida, H. Funakubo and S.Koda, Appl. Phys. Lett., 91 (2007) 022906.
  • [13] N. Panwar, I. Coondoo, A. Tomar, A. L. Kholkin , V. S. Puli, R. S.Katiyar, Mat. Res. Bull. 47 (2012) 4240.
  • [14] I. Coondoo, N. Panwar, I Bdikin, V. S. Puli, R. S. Katiyar and A. L.Kholkin, J. Phys. D: Appl. Phys. 45 (2012) 055302.
  • [15] P. Hermet, M. Goffinet, J. Kreisel, and Ph. Ghosez, Phys. Rev., B75 (2007) 220102(R).
  • [16] G. L. Yuan, S. W. Or, and H. L. W. Chan, J. Appl. Phys., 101 (2007)064101.
  • [17] Y. M. Hu, H. S. Gu, X. C. Sun, J. You, and J. Wang, Appl. Phys.Lett., 88, (2006) 193120.
  • [18] Y. Zhang, H. Zhang, J. Yin, H. Zhang, J. Chen, W. Wang, G. Wu, J.Mag. Magn. Mater., 322 (2010) 2251.
  • [19] R. Palwicz, Przeniosło, I. Sosnowska, A.W. Hewat, Acta Crystalgr.,B63 (2007) 537.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_muma-2014-0003
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.