Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 1 | 1 |

Article title

Design considerations for mesoporous silica nanoparticulate systems in facilitating biomedical applications

Content

Title variants

Languages of publication

EN

Abstracts

EN
Mesoporous silica nanoparticles (MSNs) have advanced to the forefront of multifunctional nanoparticulate systems in nanomedicine, owing to this highly fexible materials platform enabling a multitude of design options, often in a modular fashion. Drug delivery ability, detectability via diferent imaging modalities, and stimuliresponsiveness are often combined into one particle system. Very sophisticated and versatile designs along with impressive demonstrations of applicability have been reported to date, but a common ground when it comes to some critical considerations valid for any nanoparticle intended for biomedical purposes is lacking to some degree. In this study, we attempt to take a glance at some of the most crucial aspects of biomedical nanoparticulate design and relate how they apply specifically toMSNs. These considerations include fuorophore labeling and leaching with respect to immobilization to MSNs, the surrounding conditions, carrier biodegradability, and surface coating. Surface modifcation strategies and surface charge tuning are further considered in conjunction to the relative amount of cellular uptake and serum protein adsorption. Cellular internalization routes and biological techniques used to evaluate especially in vitro biobehavior are discussed. Our attempt is hereby to draw attention to some of the most frequently occurring issues to be considered in the design of MSN systems for biomedical applications

Publisher

Year

Volume

1

Issue

1

Physical description

Dates

published
1 - 1 - 2014
online
9 - 4 - 2014

Contributors

author
  • Center for Functional Materials, Laboratory for Physical Chemistry, Åbo Akademi University, Finland
  • Pharmacy Department, Faculty of Tech. & Eng., The M.S.University of Baroda, India
  • Center for Functional Materials, Laboratory for Physical Chemistry, Åbo Akademi University, Finland
  • Center for Functional Materials, Laboratory for Physical Chemistry, Åbo Akademi University, Finland
  • Laboratory of Biophysics, Institute of Biomedicine and Medicity Research Laboratories, University of Turku, Finland
author
  • Center for Functional Materials, Laboratory for Physical Chemistry, Åbo Akademi University, Finland
  • Center for Functional Materials, Laboratory for Physical Chemistry, Åbo Akademi University, Finland
  • Department of Biosciences, Cell biology, Åbo Akademi University, Finland
  • Pharmacy Department, Faculty of Tech. & Eng., The M.S. University of Baroda, India
  • Laboratory of Biophysics, Institute of Biomedicine and Medicity Research Laboratories, University of Turku, Finland
  • Center for Functional Materials, Laboratory for Physical Chemistry, Åbo Akademi University, Finland

References

  • [1] Jessica M Rosenholm et al., “Nanoparticles in Targeted Cancer Therapy: Mesoporous Silica Nanoparticles Entering Preclinical Development Stage,” Nanomedicine 7, no. 1 (January 2012): 111-120, doi:10.2217/nnm.11.166.[Crossref]
  • [2] Yu-Shen Lin, Katie R. Hurley, and Christy L. Haynes, “Critical Considerations in the Biomedical Use of Mesoporous Silica Nanoparticles,” The Journal of Physical Chemistry Letters 3, no. 3 (February 2, 2012): 364-374, doi:10.1021/jz2013837.[Crossref]
  • [3] Yanes RE, Tamanoi F. Development of mesoporous silica nanomaterials as a vehicle for anticancer drug delivery. Ther Deliv. 2012 Mar;3(3):389-404. doi: 10.4155/tde.12.9.[Crossref]
  • [4] Zongxi Li et al., “Mesoporous Silica Nanoparticles in Biomedical Applications,” Chemical Society Reviews 41, no. 7 (March 12, 2012): 2590-2605, doi:10.1039/C1CS15246G.[Crossref]
  • [5] Piaoping Yang, Shili Gai, and Jun Lin, “Functionalized Mesoporous Silica Materials for Controlled Drug Delivery,” Chemical Society Reviews 41, no. 9 (April 9, 2012): 3679-3698, doi:10.1039/C2CS15308D.[Crossref]
  • [6] Mohammad-Ali Shahbazi, Barbara Herranz, and Helder A. Santos, “Nanostructured Porous Si-Based Nanoparticles for Targeted Drug Delivery,” Biomatter 2, no. 4 (October 1, 2012): 296-312, doi:10.4161/biom.22347.[Crossref]
  • [7] Wilson X. Mai and Huan Meng, “Mesoporous Silica Nanoparticles: A Multifunctional Nano Therapeutic System,” Integrative Biology 5, no. 1 (December 17, 2012): 19-28, doi:10.1039/C2IB20137B.[Crossref]
  • [8] Derrick Tarn et al., “Mesoporous Silica Nanoparticle Nanocarriers: Biofunctionality and Biocompatibility,” Accounts of Chemical Research 46, no. 3 (March 19, 2013): 792-801, doi:10.1021/ar3000986.[Crossref]
  • [9] Qianjun He and Jianlin Shi, “MSN Anti-Cancer Nanomedicines: Chemotherapy Enhancement, Overcoming of Drug Resistance, and Metastasis Inhibition,” Advanced Materials (2013): n/a- n/a, doi:10.1002/adma.201303123.[Crossref]
  • [10] Yu Chen, Hangrong Chen, and Jianlin Shi, “In Vivo Bio- Safety Evaluations and Diagnostic/Therapeutic Applications of Chemically Designed Mesoporous Silica Nanoparticles,” Advanced Materials 25, no. 23 (2013): 3144-3176, doi:10.1002/adma.201205292.[Crossref]
  • [11] Christian Argyo et al., “Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery,” Chemistry of Materials 26, no. 1 (January 14, 2014): 435-451, doi:10.1021/cm402592t.[Crossref]
  • [12] Ayush Verma and Francesco Stellacci, “Efect of Surface Properties on Nanoparticle-Cell Interactions,” Small 6, no. 1 (2010): 12-21, doi:10.1002/smll.200901158.[Crossref]
  • [13] Andrea Kunzmann et al., “Toxicology of Engineered Nanomaterials: Focus on Biocompatibility, Biodistribution and Biodegradation,” Biochimica et Biophysica Acta (BBA) - General Subjects 1810, no. 3 (March 2011): 361-373, doi:10.1016/j.bbagen.2010.04.007.[Crossref]
  • [14] Didem Sen Karaman et al., “Shape Engineering vs Organic Modi fcation of Inorganic Nanoparticles as a Tool for Enhancing Cellular Internalization,” Nanoscale Research Letters 7, no. 1 (December 1, 2012): 1-14, doi:10.1186/1556-276X-7-358.[Crossref]
  • [15] Hong Xu et al., “Preparation of Monodispersed Mesoporous Silica Spheres with Controllable Particle Size Under an Alkaline Condition,” International Journal of Applied Ceramic Technology 9, no. 6 (2012): 1112-1123, doi:10.1111/j.1744-7402.2011.02716.x.[Crossref]
  • [16] Jessica M. Rosenholm et al., “Targeting of Porous Hybrid Silica Nanoparticles to Cancer Cells,” ACS Nano 3, no. 1 (January 27, 2009): 197-206, doi:10.1021/nn800781r.[Crossref]
  • [17] Jessica M. Rosenholm, Antti Penninkangas, and Mika Lindén, “Amino-Functionalization of Large-Pore Mesoscopically Ordered Silica by a One-Step Hyperbranching Polymerization of a Surface-Grown Polyethyleneimine,” Chemical Communications no. 37 (September 19, 2006): 3909-3911, doi:10.1039/B607886A.[Crossref]
  • [18] Jessica M. Rosenholm and Mika Lindén, “Wet-Chemical Analysis of Surface Concentration of Accessible Groups on Diferent Amino-Functionalized Mesoporous SBA-15 Silicas,” Chemistry of Materials 19, no. 20 (October 1, 2007): 5023-5034, doi:10.1021/cm071289n.[Crossref]
  • [19] Jessica M. Rosenholm, Alain Duchanoy, and Mika Lindén, “Hyperbranching Surface Polymerization as a Tool for Preferential Functionalization of the Outer Surface of Mesoporous Silica†,” Chemistry of Materials 20, no. 3 (February 1, 2008): 1126-1133, doi:10.1021/cm7021328.[Crossref]
  • [20] RainerWittig et al., “Active Targeting of Mesoporous Silica Drug Carriers Enhances -Secretase Inhibitor Efcacy in an in Vivo Model for Breast Cancer,” Nanomedicine (July 30, 2013): 1-17, doi:10.2217/nnm.13.62.[Crossref]
  • [21] Aurélien Auger et al., “A Comparative Study of Non-Covalent Encapsulation Methods for Organic Dyes into Silica Nanoparticles,” Nanoscale Research Letters 6, no. 1 (April 13, 2011): 328, doi:10.1186/1556-276X-6-328.[Crossref]
  • [22] Daniel R. Larson et al., “Silica Nanoparticle Architecture Determines Radiative Properties of Encapsulated Fluorophores,” Chemistry of Materials 20, no. 8 (April 1, 2008): 2677-2684, doi:10.1021/cm7026866.[Crossref]
  • [23] Robert Sjöback, Jan Nygren, and Mikael Kubista, “Absorption and Fluorescence Properties of Fluorescein,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 51, no. 6 (June 1995): L7-L21, doi:10.1016/0584-8539(95)01421-P.[Crossref]
  • [24] A. Cook and A. Le, “The Efect of Solvent and pH on the Fluorescence Excitation and Emission Spectra of Solutions Containing Fluorescein.,” J. Phy Chem Lab 10 (2006): 44-49.
  • [25] Jessica M. Rosenholm et al., “On the Nature of the Brønsted Acidic Groups on Native and Functionalized Mesoporous Siliceous SBA-15 as Studied by Benzylamine Adsorption from Solution,” Langmuir 23, no. 8 (April 1, 2007): 4315-4323, doi:10.1021/la062450w.[Crossref]
  • [26] G.E.Ham, Polymeric Amines and Ammonium Salts, in: E.J. Goethals, ed., (Pergamon Press, Oxford, 1980).
  • [27] O. Boussif et al., “A Versatile Vector for Gene and Oligonucleotide Transfer into Cells in Culture and in Vivo: Polyethylenimine,” Proceedings of the National Academy of Sciences 92, no. 16 (August 1, 1995): 7297-7301.
  • [28] Yi-Ping Chen et al., “Surface Charge Efect in Intracellular Localization of Mesoporous Silica Nanoparticles as Probed by Fluorescent Ratiometric pH Imaging,” RSC Advances 2, no. 3 (January 17, 2012): 968-973, doi:10.1039/C1RA00586C.[Crossref]
  • [29] Yanqing Tian et al., “Dually Fluorescent Sensing of pH and Dissolved Oxygen Using a Membrane Made from Polymerizable Sensing Monomers,” Sensors and Actuators. B, Chemical 147, no. 2 (June 3, 2010): 714-722, doi:10.1016/j.snb.2010.03.029.[Crossref]
  • [30] W.T. Godbey, Kenneth K. Wu, and Antonios G. Mikos, “Poly(ethylenimine) and Its Role in Gene Delivery,” Journal of Controlled Release 60, no. 2-3 (August 5, 1999): 149-160, doi:10.1016/S0168-3659(99)00090-5.[Crossref]
  • [31] Jixi Zhang, Diti Desai, and Jessica M. Rosenholm, “Tethered Lipid Bilayer Gates: Toward Extended Retention of Hydrophilic Cargo in Porous Nanocarriers,” Advanced Functional Materials (2013): n/a-n/a, doi:10.1002/adfm.201302995.[Crossref]
  • [32] Werner Stöber, Arthur Fink, and Ernst Bohn, “Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range,” Journal of Colloid and Interface Science 26, no. 1 (January 1968): 62-69, doi:10.1016/0021-9797(68)90272-5.[Crossref]
  • [33] Qianjun He et al., “The Three-Stage in Vitro Degradation Behavior of Mesoporous Silica in Simulated Body Fluid,”Microporous and Mesoporous Materials 131, no. 1-3 (June 2010): 314-320, doi:10.1016/j.micromeso.2010.01.009.[Crossref]
  • [34] Siddharth V. Patwardhan, Graham E. Tilburey, and Carole C. Perry, “Interactions of Amines with Silicon Species in Undersaturated Solutions Leads to Dissolution And/or Precipitation of Silica,” Langmuir 27, no. 24 (December 20, 2011): 15135-15145, doi:10.1021/la204180r.[Crossref]
  • [35] H. Takakusa et al., “Intramolecular Fluorescence Resonance Energy Transfer System with Coumarin Donor Included in Beta- Cyclodextrin,” Analytical Chemistry 73, no. 5 (March 1, 2001): 939-942.[Crossref]
  • [36] Yasutomo Kawanishi et al., “Design and Synthesis of Intramolecular Resonance-Energy Transfer Probes for Use in Ratiometric Measurements in Aqueous Solution,” Angewandte Chemie International Edition 39, no. 19 (2000): 3438-3440, doi:10.1002/1521-3773(20001002)39:19<3438::AIDANIE3438> 3.0.CO;2-T.[Crossref]
  • [37] Ralph Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica (New York: John Wiley and Sons, 1979).
  • [38] Jefrey C. Brinker and George W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Gulf Professional Publishing, 1990).
  • [39] Blake Simmons et al., “Understanding Amine Catalyzed Silica Polymerization: Diatoms as Bioarchitects” (Sandia National Laboratories, 2007).
  • [40] Rosa Casasús et al., “Toward the Development of Ionically Controlled Nanoscopic Molecular Gates,” Journal of the American Chemical Society 126, no. 28 (July 1, 2004): 8612-8613, doi:10.1021/ja048095i.[Crossref]
  • [41] Rosa Casasús et al., “Dual Aperture Control on pH- and Anion- Driven Supramolecular Nanoscopic Hybrid Gate-like Ensembles,” Journal of the American Chemical Society 130, no. 6 (February 1, 2008): 1903-1917, doi:10.1021/ja0756772.[Crossref]
  • [42] C. Barbé et al., “Silica Particles: A Novel Drug-Delivery System,” Advanced Materials 16, no. 21 (2004): 1959-1966, doi:10.1002/adma.200400771.[Crossref]
  • [43] Hong Dinh Duong and Jong Il Rhee, “Exploitation of Thermo- Efect of Rhodamine B Entrapped in Sol-gel Matrix and Silica Gel for Temperature Detection,” Sensors and Actuators B: Chemical 124, no. 1 (June 10, 2007): 18-23, doi:10.1016/j.snb.2006.11.035.[Crossref]
  • [44] Igor Sokolov and Sajo Naik, “Novel Fluorescent Silica Nanoparticles: Towards Ultrabright Silica Nanoparticles,” Small 4, no. 7 (2008): 934-939, doi:10.1002/smll.200700236.[Crossref]
  • [45] Eun-Bum Cho, Dmytro O. Volkov, and Igor Sokolov, “Ultrabright Fluorescent Mesoporous Silica Nanoparticles,” Small 6, no. 20 (2010): 2314-2319, doi:10.1002/smll.201001337.[Crossref]
  • [46] Eun-Bum Cho, Dmytro O. Volkov, and Igor Sokolov, “Ultrabright Fluorescent Silica Mesoporous Silica Nanoparticles: Control of Particle Size and Dye Loading,” Advanced Functional Materials 21, no. 16 (2011): 3129-3135, doi:10.1002/adfm.201100311.[Crossref]
  • [47] Didem Sen Karaman et al., “Rational Evaluation of the Utilization of PEG-PEI Copolymers for the Facilitation of Silica Nanoparticulate Systems in Biomedical Applications,” Journal of Colloid and Interface Science 418 (March 15, 2014): 300-310, doi:10.1016/j.jcis.2013.11.080.[Crossref]
  • [48] Hervé Hillaireau and Patrick Couvreur, “Nanocarriers’ Entry into the Cell: Relevance to Drug Delivery,” Cellular and Molecular Life Sciences 66, no. 17 (September 1, 2009): 2873-2896, doi:10.1007/s00018-009-0053-z.[Crossref]
  • [49] Tore-Geir Iversen, Tore Skotland, and Kirsten Sandvig, “Endocytosis and Intracellular Transport of Nanoparticles: Present Knowledge and Need for Future Studies,” Nano Today 6, no. 2 (April 2011): 176-185, doi:10.1016/j.nantod.2011.02.003.[Crossref]
  • [50] Joanna Rejman et al., “Size-Dependent Internalization of Particles via the Pathways of Clathrin- and Caveolae-Mediated Endocytosis.,” Biochemical Journal 377, no. Pt 1 (January 1, 2004): 159-169, doi:10.1042/BJ20031253.[Crossref]
  • [51] Tsai-Hua Chung et al., “The Efect of Surface Charge on the Uptake and Biological Function of Mesoporous Silica Nanoparticles in 3T3-L1 Cells and Human Mesenchymal Stem Cells,” Biomaterials 28, no. 19 (July 2007): 2959-2966, doi:10.1016/j.biomaterials.2007.03.006.[Crossref]
  • [52] Ilaria Rivolta, Panariti, and Miserocchi, “The Efect of Nanoparticle Uptake on Cellular Behavior: Disrupting or Enabling Functions?,” Nanotechnology, Science and Applications (September 2012): 87, doi:10.2147/NSA.S25515.[Crossref]
  • [53] Nanjing Hao et al., “The Shape Efect of PEGylated Mesoporous Silica Nanoparticles on Cellular Uptake Pathway in Hela Cells,” Microporous and Mesoporous Materials 162 (November 1, 2012): 14-23, doi:10.1016/j.micromeso.2012.05.040.[Crossref]
  • [54] Melissa D. Howard et al., “PEGylation of Nanocarrier Drug Delivery Systems: State of the Art,” Journal of Biomedical Nanotechnology 4, no. 2 (June 1, 2008): 133-148, doi:10.1166/jbn.2008.021.[Crossref]
  • [55] Donald E. Owens III and Nicholas A. Peppas, “Opsonization, Biodistribution, and Pharmacokinetics of Polymeric Nanoparticles,” International Journal of Pharmaceutics 307, no. 1 (January 3, 2006): 93-102, doi:10.1016/j.ijpharm.2005.10.010.[Crossref]
  • [56] Zohreh Amoozgar and Yoon Yeo, “Recent Advances in Stealth Coating of Nanoparticle Drug Delivery Systems,”Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 4, no. 2 (2012): 219-233, doi:10.1002/wnan.1157. [57] Pablo del Pino et al., “Protein Corona Formation around Nanoparticles - from the Past to the Future,”Materials Horizons (November 11, 2013), doi:10.1039/C3MH00106G.[Crossref]
  • [58] M. Laird Forrest, James T. Koerber, and Daniel W. Pack, “A Degradable Polyethylenimine Derivative with Low Toxicity for Highly Efcient Gene Delivery,” Bioconjugate Chemistry 14, no. 5 (September 1, 2003): 934-940, doi:10.1021/bc034014g.[Crossref]
  • [59] He Shen et al., “Synthesis, Protein Delivery, and in Vitro and in Vivo Toxicity of a Biodegradable Poly(aminoester),” Toxicology Research 2, no. 6 (2013): 379, doi:10.1039/c3tx50074h.[Crossref]
  • [60] Veronika Mamaeva et al., “Mesoporous Silica Nanoparticles as Drug Delivery Systems for Targeted Inhibition of Notch Signaling in Cancer,”Molecular Therapy 19, no. 8 (August 2011): 1538-1546, doi:10.1038/mt.2011.105.[Crossref]
  • [61] Hong Jin Kim, Joong Ho Moon, and Joon Won Park, “A Hyperbranched Poly(ethyleneimine) Grown on Surfaces,” Journal of Colloid and Interface Science 227, no. 1 (July 1, 2000): 247-249, doi:10.1006/jcis.2000.6861.[Crossref]
  • [62] Tian Xia et al., “Polyethyleneimine Coating Enhances the Cellular Uptake of Mesoporous Silica Nanoparticles and Allows Safe Delivery of siRNA and DNA Constructs,” ACS Nano 3, no. 10 (October 27, 2009): 3273-3286, doi:10.1021/nn900918w.[Crossref]
  • [63] Qianjun He et al., “Intracellular Localization and Cytotoxicity of Spherical Mesoporous Silica Nano- and Microparticles,” Small 5, no. 23 (2009): 2722-2729, doi:10.1002/smll.200900923. [Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_mesbi-2014-0001
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.