Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 1 | 1 |

Article title

Probing Electronic Properties of Graphene on the Atomic Scale by Scanning Tunneling Microscopy and Spectroscopy

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Atomic scale investigations of the electronic properties of graphene are playing a crucial role in understanding and tuning the exotic properties of this material for its potential device applications. Scanning tunneling microscopy (STM) and spectroscopy (STS) are unique techniques for atomic scale investigations and have been extensively used in graphene research. In this article, we review recent progresses in STM and STS studies of the electronic properties of suspended graphene as well as graphene supported by different substrates including graphite, metals, silicon carbide, silicon dioxide and boron nitride.

Publisher

Year

Volume

1

Issue

1

Physical description

Dates

published
1 - 1 - 2014
online
1 - 5 - 2014
received
20 - 1 - 2014
accepted
27 - 3 - 2014

Contributors

author
  • Department of Physics and Astronomy, California State University, Northridge, California 91330, USA

References

  • [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Electric ffeld effect in atomically thin carbon fflms, Science 306, 2004, 666.
  • [2] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, The electronic properties of graphene, Review of Modern Physics 81, 2009, 109.
  • [3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, Twodimensional gas of massless Dirac fermions in graphene, Nature 438, 2005, 197.
  • [4] Y. B. Zhang, Y. W. Tan, H. L. Stormer and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438, 2005, 201.
  • [5] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim and A. K. Geim, Room-temperature quantum Hall effect in graphene, Science 315, 2007, 1379.
  • [6] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. de Heer, Electronic conffnement and coherence in patterned epitaxial graphene, Science 312, 2006, 1191.
  • [7] G. M. Rutter, J. N. Crain, N. P. Guisinger, T. Li, P. N. First and J. A. Stroscio, Scattering and interference in epitaxial graphene, Science 317, 2007, 219.
  • [8] A. Bostwick, T. Ohta, Th. Seyller, K. Horn and E. Rotenberg, Quasiparticle dynamics in graphene, Nature Physics 3, 2007, 36.[Crossref]
  • [9] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim and H. L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Communications 146, 2008, 351.[Crossref]
  • [10] A. K. Geim and K. S. Novoselov, The rise of graphene, Nature Materials 6, 2007, 183.[Crossref]
  • [11] A. K. Geim, Graphene: status and prospects, Science 324, 2009, 1530.
  • [12] C. Lee, X. Wei, J. W. Kysar and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321, 2008, 385.
  • [13] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres and A. K. Geim, Fine structure constant deffnes visual transparency of graphene, Science 320, 2008, 1308.
  • [14] A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nature Materials 10, 2011, 569.[Crossref]
  • [15] P. Sessi, J. R. Guest, M. Bode and N. P. Guisinger, Patterning graphene at the nanometer scale via hydrogen desorption, Nano Letters 9, 2009, 4343.[Crossref]
  • [16] D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim and K. S. Novoselov, Control of graphene’s properties by reversible hydrogenation: Evidence for graphene, Science 323, 2009, 610.
  • [17] M. Y. Han, B. Özyilmaz, Y. Zhang and P. Kim, Energy bandgap engineering of graphene nanoribbons, Physical Review Letters 98, 2007, 206805.[Crossref]
  • [18] V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kemp, P. Hobza, R. Zboril and K. S. Kim, Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications, Chemistry Review 112, 2012, 6156.[Crossref]
  • [19] J. E. Johns and M. C. Hersam, Atomic covalent functionalization of graphene, Accounts of Chemical Research 46, 2013, 77.[Crossref]
  • [20] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov and A. K. Geim, Two-dimensional atomic crystals, Proceedings of the National Academy of Sciences of the United States of America 102, 2005, 10451.[Crossref]
  • [21] C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. de Heer, Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics, Journal of Physical Chemistry B 108, 2004, 19912.[Crossref]
  • [22] T. Ohta, A. Bostwick, T. Seyller, K. Horn and E. Rotenberg, Controlling the electronic structure of bilayer graphene, Science 313, 2006, 951.
  • [23] Y. Pan, H. G. Zhang, D. X. Shi, J. T. Sun, S. X. Du, F. Liu and H.- J. Gao, Highly ordered, millimeter-scale continuous, singlecrystalline graphene monolayer formed on Ru(0001), Advanced Materials 21, 2009, 2777.
  • [24] P. W. Sutter, J.-I. Flege and E. A. Sutter, Epitaxial graphene on ruthenium, Nature Materials 7, 2008, 406.[Crossref]
  • [25] S. Marchini, S. Günther and J. Wintterlin, Scanning tunneling microscopy of graphene on Ru(0001), Physical Review B 76, 2007, 075429.
  • [26] L. Gao, J. R. Guest and N. P. Guisinger, Epitaxial graphene on Cu(111), 10, 2010, 3512.
  • [27] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen and S.-S. Pei, Graphene segregated on Ni surfaces and transferred to insulators, Applied Physics Letters 93, 2008, 113103.[Crossref]
  • [28] L. G. De Arco, Y. Zhang, A. Kumar and C. Zhou, Synthesis, transfer, and devices of single- and few-layer graphene by chemical vapor deposition, IEEE Transactions on Nanotechnology 8, 2009, 135.[Crossref]
  • [29] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, Large are, few-layer graphene fflms on arbitrary substrates by chemical vapor deposition, Nano Letters 9, 2009, 30.[Crossref]
  • [30] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.- H. Ahn, P. Kim, J.-Y. Choi and B. H. Hong, Large-scale pattern growth of graphene fflms for stretchable transparent electrodes, Nature 457, 2009, 706.
  • [31] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, Large-area synthesis of high-quality and uniform graphene fflms on copper foils, Science 324, 2009, 1312.
  • [32] M. Gao, Y. Pan, L. Huang, H. Hu, L. Z. Zhang, H. M. Guo, S. X. Du and H.-J. Gao, Epitaxial growth and structural property of graphene on Pt(111), Applied Physics Letters 98, 2011, 033101.
  • [33] Z. Klusek, W. Kozlowski, Z. Waqar, S. Datta, J. S. Burnell-Gray, I. V. Makarenko, N. R. Gall, E. V. Rutkov, A. Ya. Tontegode, A. N. Titkov, Local electronic edge states of graphene layer deposited on Ir(111) surface studied by STM/CITS, Applied Surface Science 252, 2005, 1221.
  • [34] T. A. Land, T. Michely, R. J. Behm, J. C. Hemminger, G. Comsa, STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition, Surface Science 264, 1992, 261.
  • [35] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon 45, 2007, 1558.[Crossref]
  • [36] B. Kiraly, E. V. Iski, A. J. Mannix, B. L. Fisher, M. C. Hersam and N. P. Guisinger, Solid-source growth and atomic-scale characterization of graphene on Ag(111), Nature Communications 4, 2013, 2804.
  • [37] Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu and J. M. Tour, Growth of graphene from solid carbon sources, Nature 468, 2010, 549.
  • [38] A. J. Martínez-Galera, I. Brihuega and J. M. Gómez-Rodríguez, Ethylene irradiation: A new route to grow graphene on low reactivity metals, Nano Letters 11, 2011, 3576.[Crossref]
  • [39] H. Ueta, M. Saida, C. Nakai, Y. Yamada, M. Sasaki, S. Yamamoto, Highly oriented monolayer graphite formation on Pt(111) by a supersonic methane beam, Surface Science 560, 2004, 183.
  • [40] M. Aoki and H. Amawashi, Dependence of band structures on stacking and ffeld in layered graphene, Solid State Communications 142, 2007, 123.[Crossref]
  • [41] K. F. Mak, J. Shan and T. F. Heinz, Electronic structure of fewlayer graphene: Experimental demonstration of strong dependence on stacking sequence, Physical Review Letters 104, 2010, 176404.[Crossref]
  • [42] B. Partoens and F. M. Peeters, From graphene to graphite: Electronic structure around the K point, Physical Review B 74, 2006, 075404.[Crossref]
  • [43] F. Zhang, B. Sahu, H. K. Min and A. H. MacDonald, Band structure of ABC-stacked graphene trilayers, Physical Review B 82, 2010, 035409.[Crossref]
  • [44] C. H. Lui, Z. Li, K. F. Mak, E. Cappelluti and T. F. Heinz, Observation of an electrically tunable band gap in trilayer graphene, Nature Physics 7, 2011, 944.[Crossref]
  • [45] W. Bao, L. Jing, J. Velasco Jr, Y. Lee, G. Liu, D. Tran, B. Standley, M. Aykol, S. B. Cronin, D. Smirnov, M. Koshino, E. McCann, M. Bockrath and C. N. Lau, Stacking-dependent band gap and quantum transport in trilayer graphene, Nature Physics 7, 2011, 948.[Crossref]
  • [46] M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. F. Morpurgo and S. Tarucha, Trilayer graphene is a semimetal with a gate-tunable band overlap, Nature Nanotechnology 4, 2009, 383.[Crossref]
  • [47] J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo and L. M. K. Vandersypen, Gate-induced insulating state in bilayer graphene devices, Nature Materials 7, 2007, 151.
  • [48] Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen and F. Wang, Direct observation of a widely tunable bandgap in bilayer graphene, Nature 459, 2009, 820.
  • [49] E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. Lopes dos Santos, J. Nilsson, F. Guinea, A. K. Geim and A. H. Castro Neto, Biased bilayer graphene: Semiconductor with a gap tunable by the electric ffeld effect, Physical Review Letters 99, 2007, 216802.[Crossref]
  • [50] S. Das Sarma, S. Adam, E. H. Hwang and E. Rossi, Electronic transport in two-dimensional graphene, Review of Modern Physics 83, 2011, 407.
  • [51] D. Lu, I. M. Vishik, M. Yi, Y. Chen, R. G. Moore and Z.-X. Shen, Angle-resolved photoemission studies of quantum materials, Annual Review of Condensed Matter Physics 3, 2012, 129.[Crossref]
  • [52] G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel, Surface studies by scanning tunneling microscopy, Physical Review Letters 49, 1982, 57.[Crossref]
  • [53] K. McElroy, R. W. Simmonds, J. E. Hoffman, D.-H. Lee, J. Orenstein, H. Eisaki, S. Uchida and J. C. Davis, Relating atomicscale electronic phenomena to wave-like quasiparticle states in superconducting Bi2Sr2CaCu2O8+ff, Nature 422, 2003, 592.
  • [54] H.-J. Gao and L. Gao, Scanning tunneling microscopy of functional nanostructures on solid surfaces: Manipulation, selfassembly, and applications, Progress in Surface Science 85, 2010, 28.[Crossref]
  • [55] P. R. Wallace, The band theory of graphite, Physical Review 71, 1947, 622.[Crossref]
  • [56] Y. Zhang, V. W. Brar, F. Wang, C. Girit, Y. Yayon, M. Panlasigui, A. Zettl and M. F. Crommie, Giant phonon-induced conductance in scanning tunneling spectroscopy of gate-tunable graphene, Nature Physics 4, 2008, 627.[Crossref]
  • [57] R. Decker, Y. Wang, V. W. Brar, W. Regan, H.-Z. Tsai, Q. Wu, W. Gannett, A. Zettl and M. F. Crommie, Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy, Nano Letters 11, 2011, 2291.[Crossref]
  • [58] Y. Zhang, V. W. Brar, C. Girit, A. Zettl and M. F. Crommie, Origin of spatial charge inhomogeneity in graphene, Nature Physics 5, 2009, 722.[Crossref]
  • [59] J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Klitzing and A. Yacoby, Observation of electron-hole puddles in graphene using a scanning single-electron transistor, Nature Physics 4, 2008, 144.[Crossref]
  • [60] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard and J. Hone, Boron nitride substrates for high-quality graphene electronics, Nature Nanotechnology 5, 2010, 722.[Crossref]
  • [61] E. Y. Andrei, G. Li and X. Du, Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport, Reports on Progress in Physics 75, 2012, 056501.
  • [62] M. Morgenstern, Scanning tunneling microscopy and spectroscopy of graphene on insulating substrates, Physica Status Solidi B 248, 2011, 2423.[Crossref]
  • [63] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, M. S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nature Nanotechnology 3, 2008, 206.[Crossref]
  • [64] N. Tombros, A. Veligura, J. Junesch, J. J. van den Berg, P. J. Zomer, M. Wojtaszek, I. J. V. Marum, H. T. Jonkman and B. J. van Wees, Large yield production of high mobility freely suspended graphene electronic devices on a polydimethylglutarimide based organic polymer, Journal of Applied Physics 109, 2011, 093702.[Crossref]
  • [65] X. Du, I. Skachko, A. Barker and E. Y. Andrei, Approaching ballistic transport in suspended graphene, Nature Nanotechnology 3, 2008, 491.[Crossref]
  • [66] X. Du, I. Skachko, F. Duerr, A. Luican and E. Y. Andrei, Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene, Nature 462, 2009, 192.
  • [67] K. I. Bolotin, F. Ghahari, M. D. Shulman, H. L. Stormer and P. Kim, Observation of the fractional quantum Hall effect in graphene, Nature 462, 2009, 196.
  • [68] R. Zan, C. Muryn, U. Bangert, P. Mattocks, P. Wincott, D. Vaughan, X. Li, L. Colombo, R. S. Ruoff, B. Hamilton and K. S. Novoselov, Scanning tunneling microscopy of suspended graphene, Nanoscale 4, 2012, 3065.[Crossref]
  • [69] R. Zan, U. Bangert, C. Muryn, P. Mattocks, B. Hamilton and K. S. Novoselov, Scanning tunneling microscopy of suspended
  • [70] N. N. Klimov, S. Jung, S. Zhu, T. Li, C. A. Wright, S. D. Solares, D. B. Newell, N. B. Zhitenev and J. A. Stroscio, Electromechanical properties of graphene drumheads, Science 336, 2012, 1557.
  • [71] P. Xu, Y. Yang, S. D. Barber, M. L. Ackerman, J. K. Schoelz, D. Qi, I. A. Kornev, L. Dong, L. Bellaiche, S. Barraza-Lopez and P. M. Thibado, Atomic control of strain in freestanding graphene, Physical Review B 85, 2012, 121406(R).
  • [72] S. Jung, G. M. Rutter, N. N. Klimov, D. B. Newell, I. Calizo, A. R. Hight-Walker, N. B. Zhitenev and J. A. Stroscio, Evolution of microscopic localization in graphene in a magnetic ffeld from scattering resonances to quantum dots, Nature Physics 7, 2011, 245.[Crossref]
  • [73] G. Li and E. Y. Andrei, Observation of Landau levels of Dirac fermions in graphite, Nature Physics 3, 2007, 623.[Crossref]
  • [74] T. Matsui, H. Kambara, Y. Niimi, K. Tagami, M. Tsukada and H. Fukuyama, STS observations of Landau levels at graphite surfaces, Physical Review Letters 94, 2005, 226403.[Crossref]
  • [75] G. Li, A. Luican and E. Y. Andrei, Scanning tunneling spectroscopy of graphene on graphite, Physical Review Letters 102, 2009, 176804.[Crossref]
  • [76] H. A. Mizes and J. S. Foster, Long-range electronic perturbations caused by defects using scanning tunneling microscopy, Science 244, 1989, 559.
  • [77] K. F. Kelly, D. Sarkar, G. D. Hale, S. J. Oldenburg and N. J. Halas, Threefold electron scattering on graphite observed with C60-adsorbed STM tips, Science 273, 1996, 1371.
  • [78] P. Ruffeux, O. Gröning, P. Schwaller, L. Schlapbach and P. Gröning, Hydrogen atoms cause long-range electronic effects on graphite, Physical Review Letters 84, 2000, 4910.[Crossref]
  • [79] M. M. Ugeda, I. Brihuega, F. Guinea and J. M. Gómez- Rodríguez, Missing atom as a source of carbon magnetism, Physical Review Letters 104, 2010, 096804.[Crossref]
  • [80] M. Gao, Y. Pan, C. Zhang, H. Hu, R. Yang, H. Lu, J. Cai, S. Du, F. Liu and H.-J. Gao, Tunable interfacial properties of epitaxial graphene on metal substrates, Applied Physics Letters 96, 2010, 053109.[Crossref]
  • [81] E. Sutter, D. P. Acharya, J. T. Sadowski and P. Sutter, Scanning tunneling microscopy on epitaxial bilayer graphene on ruthenium (0001), Applied Physics Letters 94, 2009, 133101.
  • [82] D. Eom, D. Prezzi, K. T. Rim, H. Zhou, M. Lefenfeld, S. Xiao, C. Nuckolls, M. S. Hybertsen, T. F. Heinz and G. W. Flynn, Structure and electronic properties of graphene nanoislands on Co(0001), Nano Letters 9, 2009, 2844.
  • [83] L. Zhao, K. T. Rim, H. Zhou, R. He, T. F. Heinz, A. Pinczuk, G. W. Flynn and A. N. Pasupathy, Influence of copper crystal surface on the CVD growth of large area monolayer graphene, Solid State Communications 151, 2011, 509.[Crossref]
  • [84] J. Cho, L. Gao, J. Tian, H. Cao, W. Wu, Q. Yu, E. N. Yitamben, B. Fisher, J. R. Guest, Y. P. Chen and N. P. Guisinger, Atomic-scale investigation of graphene grown on Cu foil and the effects of thermal annealing, ACS Nano 5, 2011, 3607.[Crossref]
  • [85] J. Tian, H. Cao, W. Wu, Q. Yu, N. P. Guisinger and Y. P. Chen, Graphene induced surface reconstruction of Cu, Nano Letters 12, 2012, 3893.[Crossref]
  • [86] J. Tian, H. Cao, W. Wu, Q. Yu and Y. P. Chen, Direct imaging of graphene edges: Atomic structure and electronic scattering, Nano Letters 11, 2011, 3663.[Crossref]
  • [87] H. I. Rasool, E. B. Song, M. J. Allen, J. K. Wassei, R. B. Kaner, K. L. Wang, B. H. Weiller and J. K. Gimzewski, Continuity of graphene on polycrystalline copper, Nano Letters 11, 2011, 251.[Crossref]
  • [88] G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink and P. J. Kelly, Doping graphene with metal contacts, Physical Review Letters 101, 2008, 026803.[Crossref]
  • [89] I. Pletikosic, M. Kralj, P. Pervan, R. Brako, J. Coraux, A. T. N’Diaye, C. Busse and T. Michely, Dirac cones and minigaps for graphene on Ir(111), Physical Review Letters 102, 2009, 056808.
  • [90] A. B. Preobrajenski, M. L. Ng, A. S. Vinogradov and N. Mårtensson, Controlling graphene corrugation on latticemismatched substrates, Physical Review B 78, 2008, 073401.[Crossref]
  • [91] Z. Sun, S. K. Hämäläinen, J. Sainio, J. Lahtinen, D. Vanmaekelbergh and P. Liljeroth, Topographic and electronic contrast of the graphene moiré on Ir(111) probed by scanning tunneling microscopy and noncontact atomic force microscopy, Physical Review B 83, 2011, 081415(R).
  • [92] P. A. Khomyakov, G. Giovannetti, P. C. Rusu, G. Brocks, J. van den Brink and P. J. Kelly, First-principles study of the interaction and charge transfer between graphene and metals, Physical Review B 79, 2009, 195425.[Crossref]
  • [93] T. Brugger, S. Günther, B. Wang, J. Hugo Dil, M.-L. Bocquet, J. Osterwalder, J. Wintterlin and T. Greber, Comparison of electronic structure and template function of single-layer graphene and a hexagonal boron nitride nanomesh on Ru(0001), Physical Review B 79, 2009, 045407.
  • [94] A. Nagashima, N. Tejima and C. Oshima, Electronic states of the pristine and alkali-metal-intercalated monolayer graphite/Ni(111) systems, Physical Review B 50, 1994, 17487.
  • [95] I. Brihuega, P. Mallet, C. Bena, S. Bose, C. Michaelis, L. Vitali, F. Varchon, L. Magaud, K. Kern and J. Y. Veuillen, Quasiparticle chirality in epitaxial graphene probed at the nanometer scale, Physical Review Letters 101, 2008, 206802.[Crossref]
  • [96] P. Mallet, F. Varchon, C. Naud, L. Magaud, C. Berger and J.- Y. Veuillen, Electron states of mono- and bilayer graphene on SiC probed by scanning-tunneling microscopy, Physical Review B 76, 2007, 041403(R).
  • [97] A. L. Walter, S. Nie, A. Bostwick, K. S. Kim, L. Moreschini, Y. J. Chang, D. Innocenti, K. Horn, K. F. McCarty and E. Rotenberg, Electronic structure of graphene on single-crystal copper substrates, Physical Review B 84, 2011, 195443.[Crossref]
  • [98] J. Sławinska and I. Zasada, Fingerprints of Dirac points in ffrst-principles calculations of scanning tunneling spectra of graphene on a meal substrate, Physical Review B 84, 2011, 235445.[Crossref]
  • [99] X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Han, M. Borysiak, W. Cai, A. Velamakanni, Y. Zhu, L. Fu, E. M. Vogel, E. Voelkl, L. Colombo and R. S. Ruoff, Graphene fflms with large domain size by a two-step chemical vapor deposition process, Nano Letters 10, 2010, 4328.[Crossref]
  • [100] Y. Hao, M. S. Bharathi, L. Wang, Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, H. Ramanarayan, C. W. Magnuson, E. Tutuc, B. I. Yakobson, K. F. McCarty, Y.-W. Zhang, P. Kim, J. Hone, L. Colombo and R. S. Ruoff, The role of surface oxygen in the growth of large single-crystal graphene on copper, Science 342, 2013, 720.
  • [101] J. Liu, J. Wu, C. M. Edwards, C. L. Berrie, D. Moore, Z. Chen, V. A. Maroni, M. P. Paranthaman and A. Goyal, Triangular graphene grain growth on cube-textured Cu substrates, Advanced Functional Materials 21, 2011, 3868.[Crossref]
  • [102] X. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, L. Colombo and R. S. Ruoff, Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper, Journal of the American Chemical Society 133, 2011, 2816.[Crossref]
  • [103] P. Sutter, J. T. Sadowski and E. Sutter, Graphene on Pt(111): Growth and substrate interaction, Physical Review B 80, 2009, 245411.
  • [104] P. Merino, M. Švec, A. L. Pinardi, G. Otero and J. A. Martín- Gago, Strain-driven Moiré superstructures of epitaxial graphene on transition metal surfaces, ACS Nano 5, 2011, 5627.[Crossref]
  • [105] M. Enachescu, D. Schleef, D. F. Ogletree and M. Salmeron, Integration of point-contact microscopy and atomic-force microscopy: Application to characterization of graphite/Pt(111), Physical Review B 60, 1999, 16913.
  • [106] G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink and P. J. Kelly, Doping graphene with metal contacts, Physical Review Letters 101, 2008, 026803.[Crossref]
  • [107] N. Levy, S. A. Burke, K. L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A. H. Castro Neto and M. F. Crommie, Strain-induced pseudo-magnetic ffelds greater than 300 Tesla in graphene nanobubbles, Science 329, 2010, 544.
  • [108] M. M. Ugeda, D. Fernández-Torre, I. Brihuega, P. Pou, A. J. Martínez-Galera, R. Pérez and J. M. Gómez-Rodríguez, Point defects on graphene on metals, Physical Review Letters 107, 2011, 116803.[Crossref]
  • [109] W. Yan, W.-Y. He, Z.-D. Chu, M. Liu, L. Meng, R.-F. Dou, Y. Zhang, Z. Liu, J.-C. Nie and L. He, Strain and curvature induced evolution of electronic band structures in twisted graphene bilayer, Nature Communications 4, 2013, 2159.
  • [110] A. T. N’Diaye, J. Coraux, T. N. Plasa, C. Busse and T. Michely, Structure of epitaxial graphene on Ir(111), New Journal of Physics 10, 2008, 043033.
  • [111] E. Loginova, S. Nie, K. Thürmer, N. C. Bartelt and K. F. Mc- Carty, Defects of graphene on Ir(111): Rotational domains and ridges, Physical Review B 80, 2009, 085430.
  • [112] L. Meng, R. Wu, H. Zhou, G. Li, Y. Zhang, L. Li, Y. Wang and H.- J. Gao, Silicon intercalation at the interface of graphene and Ir(111), Applied Physics Letters 100, 2012, 083101.
  • [113] S.-H. Phark, J. Borme, A. L. Vanegas, M. Corbetta, D. Sander and J. Kirschner, Scanning tunneling spectroscopy of epitaxial graphene nanoisland on Ir(111), Nanoscale Research Letters 7, 2012, 255.
  • [114] R. Decker, J. Brede, N. Atodiresei, V. Caciuc, S. Blügel and R. Wiesendanger, Atomic-scale magnetism of cobaltintercalated graphene, Physical Review B 87, 2013, 041403(R).
  • [115] M. Vanin, J. J. Mortensen, A. K. Kelkkanen, J. M. Garcia-Lastra, K. S. Thygesen and K. W. Jacobsen, Graphene on metals: A van der Waals density functional study, Physical Review B 81, 2010, 081408(R).
  • [116] I. Hamada and M. Otani, Comparative van der Waals densityfunctional study of graphene on metal surfaces, Physical Review B 82, 2010, 153412.[Crossref]
  • [117] J. Sławinska, P. Dabrowski and I. Zasada, Doping of graphene by a Au(111) substrate: Calculation strategy within the local density approximation and a semiempirical van der Waals approach, Physical Review B 83, 2011, 245429.
  • [118] C. Enderlein, Y. S. Kim, A. Bostwick, E. Rotenberg and K. Horn, The formation of an energy gap in graphene on ruthenium by controlling the interface, New Journal of Physics 12, 2010, 033014.[Crossref]
  • [119] A. Varykhalov, J. Sánchez-Barriga, A. M. Shikin, C. Biswas, E. Vescovo, A. Rybkin, D. Marchenko and O. Rader, Electronic and magnetic properties of quasifreestanding graphene on Ni, Physical Review Letters 101, 2008, 157601.[Crossref]
  • [120] A. Varykhalov, M. R. Scholz, T. K. Kim and O. Rader, Effect of noble-metal contacts on doping and band gap of graphene, Physical Review B 82, 2010, 121101(R).
  • [121] I. Gierz, T. Suzuki, R. T. Weitz, D. S. Lee, B. Krauss, C. Riedl, U. Starke, H. Höchst, J. H. Smet, C. R. Ast and K. Kern, Electronic decoupling of an epitaxial graphene monolayer by gold intercalation, Physical Review B 81, 2010, 235408.[Crossref]
  • [122] C. Tao, L. Jiao, O. V. Yazyev, Y.-C. Chen, J. Feng, X. Zhang, R. B. Capaz, J. M. Tour, A. Zettl, S. G. Louie, H. Dai and M. F. Crommie, Spatially resolving edge states of chiral graphene nanoribbons, Nature Physics 7, 2011, 616.[Crossref]
  • [123] M. Koch, F. Ample, C. Joachim, and L. Grill, Voltagedependent conductance of a single graphene nanoribbons, Nature Nanotechnology 7, 2012, 713.[Crossref]
  • [124] P. Ruffeux, J. Cai, N. C. Plumb, L. Patthey, D. Prezzi, A. Ferretti, E. Molinari, X. Feng, K. Müllen, C. A. Pignedoli, and R. Fasel, Electronic structure of atomically precise graphene nanoribbons, ACS Nano 6, 2012, 6930.[Crossref]
  • [125] Y.-C. Chen, D. G. de Oteyza, Z. Pedramrazi, C. Chen, F. R. Fischer, and M. F. Crommie, Tuning the band gap of graphene nanoribbons synthesized from molecular precursors, ACS Nano 7, 2013, 6123.[Crossref]
  • [126] J. Cai, P. Ruffeux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, Atomically precise bottom-up fabrication of graphene nanoribbons, Nature 466, 2010, 470.
  • [127] M. Ezawa, Peculiar width dependence of the electronic properties of carbon nanoribbons, Physical Review B 73, 2006, 045432.[Crossref]
  • [128] Y.-W. Son, M. L. Cohen, S. G. Louie, Energy gaps in graphene nanoribbons, Physical Review Letters 97, 2006, 216803.[Crossref]
  • [129] L. Yang, C.-H. Park, Y.-W. Son, M. L. Cohen, S. G. Louie, Quasiparticle energies and band gaps in graphene nanoribbons, Physical Review Letters 99, 2007, 186801.[Crossref]
  • [130] H. Huang, D. Wei, J. Sun, S. L. Wong, Y. P. Feng, A. H. Castro Neto, and A. T. S. Wee, Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons, Scientiffc Reports 2, 2012, 983.
  • [131] P. Sutter, M. S. Hybertsen, J. T. Sadowski and E. Sutter, Electronic structure of few-layer epitaxial graphene on Ru(0001), Nano Letters 9, 2009, 2654.
  • [132] J. Mao, L. Huang, Y. Pan, M. Gao, J. He, H. Zhou, H. Guo, Y. Tian, Q. Zou, L. Zhang, H. Zhang, Y. Wang, S. Du, X. Zhou, A. H. Castro Neto and H.-J. Gao, Silicon layer intercalation of centimeter-scale, epitaxially grown monolayer graphene on Ru(0001), Applied Physics Letters 100, 2012, 093101.
  • [133] J. Cho, J. Smerdon, L. Gao, Ö. Süzer, J. R. Guest and N. P. Guisinger, Structural and electronic decoupling of C60 from epitaxial graphene on SiC, Nano Letters 12, 2012, 3018.[Crossref]
  • [134] H. T. Zhou, J. H. Mao, G. Li, Y. L. Wang, X. L. Feng, S. X. Du, K.\ Müllen and H.-J. Gao, Direct imaging of intrinsic molecular graphene for study of single molecule and interactions, Applied Physics Letters 99, 2011, 153101.[Crossref]
  • [135] Y. Murata, V. Petrova, B. B. Kappes, A. Ebnonnasir, I. Petrov, Y.-H. Xie, C. V. Ciobanu and S. Kodambaka, Moiré superstructures of graphene on faceted nickel islands, ACS Nano 4, 2010, 6509.[Crossref]
  • [136] Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill and Ph. Avouris, 100-GHz transistors from wafer-scale epitaxial graphene, Science 327, 2010, 662.
  • [137] K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber and T. Seyller, Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide, Nature Materials 8, 2009, 203.[Crossref]
  • [138] N. P. Guisinger, G. M. Rutter, J. N. Crain, P. N. First and J. A. Stroscio, Exposure of epitaxial graphene on SiC(0001) to atomic hydrogen, Nano Letters 9, 2009, 1462.
  • [139] S. Oida, F. R. McFeely, J. B. Hannon, R. M. Tromp, M. Copel, Z. Chen, Y. Sun, D. B. Farmer and J. Yurkas, Decoupling graphene from SiC(0001) via oxidation, Physical Review B 82, 2010, 041411(R).
  • [140] A. J. van Bommel, J. E. Crombeen and A. van Tooren, LEED and Auger electron observations of the SiC(0001) surface, Surface Science 48, 1975, 463.
  • [141] S. Kim, J. Ihm, H. J. Choi and Y.-W. Son, Origin of anomalous electronic structures of epitaxial graphene on silicon carbide, Physical Review Letters 100, 2008, 176802.[Crossref]
  • [142] A. Mattausch and O. Pankratov, Ab initio study of graphene on SiC, Physical Review Letters 99, 2007, 076802.[Crossref]
  • [143] F. Varchon, R. Feng, J. Hass, X. Li, B. Ngoc Nguyen, C. Naud, P. Mallet, J.-Y. Veuillen, C. Berger, E. H. Conrad and L. Magaud, Electronic structure of epitaxial graphene layers on SiC: Effect of the substrate, Physical Review Letters 99, 2007, 126805.[Crossref]
  • [144] K. V. Emtsev, F. Speck, Th. Seyller, L. Ley and J. D. Riley, Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study, Physical Review B 77, 2008, 155303.[Crossref]
  • [145] Y. Qi, S. H. Rhim, G. F. Sun, M. Weinert and L. Li, Epitaxial graphene on SiC(0001): More than just honeycombs, Physical Review Letters 105, 2010, 085502.
  • [146] F. Varchon, P. Mallet, J.-Y. Veuillen and L. Magaud, Ripples in epitaxial graphene on the Si-terminated SiC(0001) surface, Physical Review B 77, 2008, 235412.
  • [147] K. V. Emtsev, Th. Seyller, F. Speck, L. Ley, P. Stojanov, J. D. Riley and R. G. C. Leckey, Initial stages of the graphite- SiC(0001) interface formation studied by photoelectron spectroscopy, Materials Science Forum 556-557, 2007, 525.
  • [148] G. M. Rutter, N. P. Guisinger, J. N. Crain, E. A. A. Jarvis, M. D. Stiles, T. Li, P. N. First and J. A. Stroscio, Imaging the interface of epitaxial graphene with silicon carbide via scanning tunneling microscopy, Physical Review B 76, 2007, 235416.[Crossref]
  • [149] E. V. Iski, E. N. Yitamben, L. Gao and N. P. Guisinger, Graphene at the Atomic-Scale: Synthesis, characterization, and modiffcation, Advanced Functional Materials 23, 2013, 2554.[Crossref]
  • [150] G. M. Rutter, J. N. Crain, N. P. Guisinger, P. N. First and J. A. Stroscio, Structural and electronic properties of bilayer epitaxial graphene, Journal of Vacuum Science and Technology A 26, 2008, 938.
  • [151] P. Lauffer, K. V. Emtsev, R. Graupner, Th. Seyller, L. Ley, S. A. Reshanov and H. B. Weber, Atomic and electronic structure of few-layer graphene on SiC(0001) studied with scanning tunneling microscopy and spectroscopy, Physical Review B 77, 2008, 155426.
  • [152] T. Ohta, A. Bostwick, J. L. McChesney, Th. Seyller, K. Horn and E. Rotenberg, Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy, Physical Review Letters 98, 2007, 206802.[Crossref]
  • [153] V. W. Brar, Y. Zhang, Y. Yayon, T. Ohta, J. L. McChesney, A. Bostwick, E. Rotenberg, K. Horn, M. F. Crommie, Scanning tunneling spectroscopy of inhomogeneous electronic structure in monolayer and bilayer graphene on SiC, Applied Physics Letters 91, 2007, 122102.[Crossref]
  • [154] T. O. Wehling, I. Grigorenko, A. I. Lichtenstein and A. V. Balatsky, Phonon-mediated tunneling into graphene, Physical Review Letters 101, 2008, 216803.[Crossref]
  • [155] A. Bostwick, T. Ohta, T. Seyller, K. Horn and E. Rotenberg, Quasiparticle dynamics in graphene, Nature Physics 3, 2007, 36.[Crossref]
  • [156] S. Y. Zhou, G.-H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, D.-H. Lee, F. Guinea, A. H. Castro Neto and A. Lanzara, Substrate-induced bandgap opening in epitaxial graphene, Nature Materails 6, 2007, 770.[Crossref]
  • [157] D. L. Miller, K. D. Kubista, G. M. Rutter, M. Ruan, W. A. de Heer, P. N. First, J. A. Stroscio, Observing the quantization of zero mass carriers in graphene, Science 324, 2009, 924.
  • [158] J. Hass, F. Varchon, J. E. Millán-Otoya, M. Sprinkle, N. Sharma, W. A. de Heer, C. Berger, P. N. First, L. Magaud and E. H. Conrad, Why multilayer graphene on 4H-SiC(000¯1) behaves like a single sheet of graphene, Physical Review Letters 100, 2008, 125504.
  • [159] H. Yang, A. J. Mayne, M. Boucherit, G. Comtet, G. Dujardin and Y. Kuk, Quantum interference channeling at graphene edges, Nano Letters 10, 2010, 943.[Crossref]
  • [160] J. C. Koepke, J. D. Wood, D. Estrada, Z.-Y. Ong, K. T. He, E. Pop and J. W. Lyding, Atomic-scale evidence for potential barriers and strong carrier scattering at graphene grain boundaries: A scanning tunneling microscopy study, ACS Nano 7, 2013, 75.[Crossref]
  • [161] M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer and E. D. Williams, Atomic structure of graphene on SiO2, Nano Letters 7, 2007, 1643.[Crossref]
  • [162] E. Stolyarova, K. T. Rim, S. Ryu, J. Maultzsch, P. Kim, L. E. Brus, T. F. Heinz, M. S. Hybertsen and G. W. Flynn, Highresolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface, Proceedings of the National Academy of Sciences of the United States of America 104, 2007, 9209.[Crossref]
  • [163] A. Luican, G. Li and E. Y. Andrei, Quantized Landau level spectrum and its density dependence in graphene, Physical Review B 83, 2011, 041405(R).
  • [164] W. G. Cullen, M. Yamamoto, K. M. Burson, J. H. Chen, C. Jang, L. Li, M. S. Fuhrer and E. D. Williams, High-ffdelity conformation of graphene to SiO2 topographic features, Physical Review Letters 105, 2010, 215504.[Crossref]
  • [165] J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero and B. J. LeRoy, Scanning tunneling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride, Nature Materials 10, 2011, 282.[Crossref]
  • [166] M. I. Katsnelson, K. S. Novoselov and A. K. Geim, Chiral tunneling and the Klein paradox in graphene, Nature Physics 2, 2006, 620.[Crossref]
  • [167] V. V. Cheianov, V. Fal’ko and B. L. Altshuler, The focusing of electron flow and a Veselago lens in graphene p-n junctions, Science 315, 2007, 1252.
  • [168] T. Ando, Screening effect and impurity scattering in monolayer graphene, J. Phys. Soc. Jpn. 75, 2006, 074716.
  • [169] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami and M. S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nature Nanotechnology 3, 2008, 206.[Crossref]
  • [170] C. R. Dean, A. F. Young, P. Cadden-Zimansky, L. Wang, H. Ren, K. Watanabe, T. Taniguchi, P. Kim, J. Hone and K. L. Shepard, Multicomponent fractional quantum Hall effect in graphene, Nature Physics 7, 2011, 693.[Crossref]
  • [171] T. Taychatanapat, K. Watanabe, T. Taniguchi and P. Jarillo- Herrero, Quantum Hall effect and Landau-level crossing of Dirac fermions in trilayer graphene, Nature Physics 7, 2011, 621.[Crossref]
  • [172] A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi and A. K. Geim, Micrometer-scale ballistic transport in encapsulated graphene at room temperature, Nano Letters 11, 2011, 2396.[Crossref]
  • [173] P. J. Zomer, S. P. Dash, N. Tombros and B. J. van Wees, A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride, Applied Physics Letters 99, 2011, 232104.[Crossref]
  • [174] R. Wiesendanger, Spin mapping at the nanoscale and atomic scale, Review of Modern Physics 81, 2009, 1495.
  • [175] M. Bode, Spin-polarized scanning tunneling microscopy, Reports on Progress in Physics 66, 2003, 523.
  • [176] A. Kubetzka, P. Ferriani, M. Bode, S. Heinze, G. Bihlmayer, K. von Bergmann, O. Pietzsch, S. Blügel and R. Wiesendanger, Revealing antiferromagnetic order of the Fe monolayer on W(001): Spin-polarized scanning tunneling microscopy and ffrst-principles calculations, Physical Review Letters 94, 2005, 087204.
  • [177] A. T. N’Diaye, S. Bleikamp, P. J. Feibelman, and T. Michely, Two-dimensional Ir cluster lattice on a graphene moiré on Ir(111), Physical Review Letters 97, 2006, 215501.
  • [178] T. Gerber, J. Knudsen, P. J. Feibelman, E. Grånäs, P. Stratmann, K. Schulte, J. N. Andersen, and T. Michely, COinduced Smoluchowski ripening of Pt cluster arrays on the graphene/Ir(111) moiré, ACS Nano 7, 2013, 2020.
  • [179] Z. Zhou, F. Gao, D. W. Goodman, Deposition of metal clusters on single-layer graphene/Ru(0001): Factors that govern cluster growth, Surface Science 604, 2010, L31.
  • [180] Y. Pan, M. Gao, L. Huang, F. Liu, and H.-J. Gao, Directed self-assembly of monodispersed platinum nanoclusters on graphene Moiré template, Applied Physics Letters 95, 2009, 093106.[Crossref]
  • [181] O. V. Yazyev, Emergence of magnetism in graphene materials and nanostructures, Reports on Progress in Physics 73, 2010, 056501.
  • [182] J. Fernández-Rossier and J. J. Palacios, Magnetism in graphene nanoislands, Physical Review Letters 99, 2007, 177204. [Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_gpe-2014-0002
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.