Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 21 | 1 | 89-99

Article title

Phosphate recovery from animal manure wastewater by struvite crystallization and CO2 degasification reactor

Content

Title variants

Languages of publication

EN

Abstracts

EN
The problem of phosphorus discharge is related to environmental protection and food security. Struvite crystallization is a useful technology for phosphate recovery from wastewater. In the research, struvite crystallization process with CO2 degasification continuous U-shape reactor (CUSR) was application for phosphate recovery from animal manure wastewater. The result indicated PO43--P recovery ratio could achieve 47-53% without magnesium addition when CUSR hydraulic retention time controlled at 60 min. With extra magnesium addition, PO43--P recovery ratio could significant achieve 80-86% at magnesium addition amount 57.5 mg/dm3. PHREEQC modeling predictions trend of struvite crystallization was close to CUSR experimental results. The modeling calculation can provide a theoretical guide for operational parameters design. For seeding technology, high phosphate recovery efficiency was obtained and preformed struvite was the most effective seeding material. Surface characterization analysis demonstrated the dominant composition of chemical solids was struvite. Water extraction analysis indicated chemical solids recovery from animal manure wastewater could release PO43--P slowly and be available as slow-release fertilizer.
PL
Problem uwalniania fosforu jest związany z ochroną środowiska i bezpieczeństwem żywności. Krystalizacja struwitu jest przydatną technologią odzysku fosforanów ze ścieków. W opisanych badaniach proces krystalizacji struwitu zastosowano do odzyskiwania fosforanów z gnojowicy, do tego celu wykorzystano reaktor ciągłego odgazowywania CO2 w kształcie litery U (CUSR). Wyniki wskazują, że wskaźnik odzysku PO43- może osiągnąć 47-53% P bez dodatku magnezu, gdy kontrolowany, hydrauliczny czas retencji CUSR wynosi 60 min. Po wprowadzeniu magnezu w ilości 57,5 mg/dm3 wskaźnik odzysku PO43- może osiągnąć 80-86% P. Przewidywania modelu PHREEQC dotyczące krystalizacji struwitu był bliskie wynikom doświadczalnym CUSR. Obliczenia teoretyczne z wykorzystaniem modelu mogą stanowić wskazówkę do ustalania rzeczywistych parametrów eksploatacyjnych. Struwit otrzymany z gnojowicy może mieć zastosowanie w nasiennictwie. Analiza ekstrakcyjna wykazała, że materiał ten może powoli uwalniać PO43-P i dzięki temu znajduje zastosowanie jako nawóz.

Publisher

Year

Volume

21

Issue

1

Pages

89-99

Physical description

Dates

published
1 - 3 - 2014
online
9 - 4 - 2014

Contributors

author
  • Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China, phone +86 10 6273 1179
author
  • Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China, phone +86 10 6273 1179
author
  • Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China, phone +86 10 6273 1179
  • Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China, phone +86 10 6273 1179

References

  • [1] Gilbert N. Environment: The disappearing nutrient. Nature. 2009;461:716-718. DOI: 10.1038/461716a.[Crossref][WoS]
  • [2] Cordell D, Rosemarin A, Schroder JJ, Smit AL. Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options. Chemosphere. 2011;84:747-758. DOI: 10.1016/j.chemosphere.2011.02.032.[WoS][Crossref]
  • [3] Paerl HW, Huisman J. Climate - blooms like it hot. Science. 2008;320:57-58. DOI: 10.1126/science.1155398.[WoS][Crossref]
  • [4] Szogi AA, Vanotti MB. Prospects for phosphorus recovery from poultry litter. Bioresource Technol. 2009;100:5461-5465. DOI: 10.1016/j.biortech.2009.03.071.[WoS][Crossref]
  • [5] Rittmann BE, Mayer B, Westerhoff P, Edwards M. Capturing the lost phosphorus. Chemosphere. 2011;84:846-853. DOI: 10.1016/j.chemosphere.2011.02.001.[WoS][Crossref]
  • [6] Le Corre KS, Valsami-Jones E, Hobbs P, Parsons SA. Phosphorus recovery from wastewater by struvite crystallization: A review. Crit Rev Environ Sci Technol. 2009;39:433-477. DOI: 10.1080/10643380701640573.[Crossref]
  • [7] Song YH, Qiu GL, Yuan P, Cui XY, Peng JF, Zeng P, et al. Nutrients removal and recovery from anaerobically digested swine wastewater by struvite crystallization without chemical additions. J Hazard Mater. 2011;190:140-149. DOI: 10.1016/j.jhazmat.2011.03.015.[Crossref][WoS]
  • [8] Korchef A, Saidou H, Ben Amor M. Phosphate recovery through struvite precipitation by CO2 removal: Effect of magnesium, phosphate and ammonium concentrations. J Hazard Mater. 2011;186:602-613. DOI: 10.1016/j.jhazmat.2010.11.045.
  • [9] Shepherd TA, Burns RT, Moody LB., Raman DR, Stalder KJ. Development of a bench-scale air sparged continuous flow reactor for struvite precipitation from two different liquid swine manure storage systems. Appl Eng Agric. 2009;25:425-430.
  • [10] Liu ZG, Zhao QL, Lee DJ, Yang N. Enhancing phosphorus recovery by a new internal recycle seeding map reactor. Bioresource Technol. 2008;99:6488-6493. DOI: 10.1016/j.biortech.2007.11.039.[Crossref][WoS]
  • [11] Iqbal M, Bhuiyan H, Mavinic DS. Assessing struvite precipitation in a pilot-scale fluidized bed crystallizer. Environ Technol. 2008;29:1157-1167. DOI: 10.1080/09593330802075452.[Crossref][WoS]
  • [12] Zhang T, Ding LL, Ren HQ, Xiong X. Ammonium nitrogen removal from coking wastewater by chemical precipitation recycle technology. Water Res. 2009;43:5209-5215. DOI: 10.1016/j.watres.2009.08.054.[Crossref]
  • [13] Gadekar S, Pullammanappallil P. Validation and applications of a chemical equilibrium model for struvite precipitation. Environ Model Assess. 2010;15:201-209. DOI: 10.1007/s10666-009-9193-7.[Crossref][WoS]
  • [14] Zhang T, Ding LL, Ren HQ, Guo ZT, Tan J. Thermodynamic modeling of ferric phosphate precipitation for phosphorus removal and recovery from wastewater. J Hazard Mater. 2010;176:444-450. DOI: 10.1016/j.jhazmat.2009.11.049.[Crossref][WoS]
  • [15] Celen I, Buchanan JR, Burns RT, Robinson RB, Raman DR. Using a chemical equilibrium model to predict amendments required to precipitate phosphorus as struvite in liquid swine manure. Water Res. 2007;41:1689-1696. DOI: 10.1016/j.watres.2007.01.018.[WoS][Crossref]
  • [16] APHA, Standard methods for the examination of water and wastewater. 22nd ed. Washington DC, USA: Water Environment Federation; 2012.
  • [17] Mijangos F, Kamel M, Lesmes G, Muraviev DN. Synthesis of struvite by ion exchange isothermal supersaturation technique. React Funct Polym. 2004;60:151-161. DOI: 10.1016/j.reactfunctpolym.2004.02.019.[Crossref]
  • [18] Saidou H, Korchef A, Ben Moussa S, Ben Amor M. Struvite precipitation by the dissolved CO2 degasification technique: Impact of the airflow rate and pH. Chemosphere. 2009;74:338-343. DOI: 10.1016/j.chemosphere.2008.09.081.[WoS]
  • [19] Wang JS, Song YH, Yuan P, Peng JF, Fan MH. Modeling the crystallization of magnesium ammonium phosphate for phosphorus recovery. Chemosphere. 2006;65:1182-1187. DOI: 10.1016/j.chemosphere.2006.03.062.[Crossref]
  • [20] Adnan A, Koch FA, Mavinic DS. Pilot-scale study of phosphorus recovery through struvite crystallization - ii: Applying in-reactor supersaturation ratio as a process control parameter. J Environ Eng Sci. 2003;2:473-483. DOI: 10.1139/S03-048.[Crossref]
  • [21] Kim D, Ryu HD, Kim MS, Kim J, Lee SI. Enhancing struvite precipitation potential for ammonia nitrogen removal in municipal landfill leachate. J Hazard Mater. 2007;146:81-85. DOI: 10.1016/j.jhazmat.2006.11.054.[Crossref][WoS]
  • [22] Latifian M, Liu J, Mattiasson B. Struvite-based fertilizer and its physical and chemical properties. Environ Technol. 2012;33(24):2691-2697. DOI: 10.1080/09593330.2012.676073. [WoS][Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_eces-2014-0008
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.