Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 20 | 3 | 475-488

Article title

Influence of Preparation Method of Spirogyra Sp. Algae on their Sorption Capacity

Content

Title variants

Languages of publication

EN

Abstracts

EN
The influence of the preparation method of samples on the zinc ions sorption parameters in Spirogyra sp. algae was analysed. The Zn2+ sorption process from the salt solutions of this analyte was carried out in static conditions. The carried out analyses results show that the method of algae samples preparation for analyses (thermal drying, freeze drying, samples conditioning in demineralised water) and storage period influence their sorption capacity. On the basis of the carried out research of the metal sorption kinetics in live and prepared algae samples, it was found that the equilibrium is achieved after approximately 30 min. In the experiment conditions, 56% of metals are sorbed in live algae during the first 15 min. Approximately 17 and 65% of zinc ions present in the dilution accumulated in thermally dried and freeze dried algae samples respectively after 30 min of the process. It was confirmed that conditioning of the algae samples in demineralised water, prior to the sorption process, increases its efficiency. In order to define sorption capacity of freeze dried Spirogyra sp. algae, the Langmuir isotherm model was applied. It was found out that algae absorb heavy metals in proportion to their content in a solution, in which they were immersed. The sorption capacity of freeze dried Spirogyra sp. algae and zinc, defined with the use of the Langmuir isotherm, shows considerable imprecise result. Evident influence of hydrogen cations on zinc concentrations in algae and in the solution in the state of equilibrium was found out.
PL
Zbadano wpływ sposobu preparowania próbek na parametry sorpcji jonów cynku na glonach Spirogyra sp. Proces sorpcji Zn2+ z roztworów soli tego analitu prowadzono w warunkach statycznych. Wyniki z przeprowadzonych badań wskazują, że sposób przygotowania próbek glonów do analiz (suszenie termiczne, liofilizacja, kondycjonowanie próbek w wodzie zdemineralizowanej) oraz czas przechowywania ma wpływ na ich pojemność sorpcyjną. Na podstawie przeprowadzonych badań kinetyki sorpcji tego metalu na żywych i preparowanych próbkach glonów stwierdzono, że stan równowagi zostaje osiągnięty po około 30 minutach. W warunkach prowadzenia eksperymentu 56% metali sorbowanych jest na glonach żywych w pierwszych 15 minutach. W próbkach glonów suszonych termicznie i liofilizowanych po 30 minutach trwania procesu zakumulowało się odpowiednio około 17 i 65% jonów cynku obecnych w roztworze. Stwierdzono, że kondycjonowanie próbek glonów przed procesem sorpcji w wodzie zdemineralizowanej podnosi jego wydajność. W celu wyznaczenia pojemności sorpcyjnej liofilizowanych glonów Spirogyra sp. zastosowano model izotermy Langmuira. Stwierdzono, że glony sorbują metale ciężkie proporcjonalnie do ich zawartości w roztworze, w którym zostały zanurzone. Wyznaczona z izotermy Langmuira pojemność sorpcyjna liofilizowanych glonów Spirogyra sp. względem cynku jest obarczona dużą niepewnością pomiarów. Stwierdzono wyraźny wpływ kationów wodorowych na stężenia miedzi w glonach i w roztworze w stanie równowagi.

Publisher

Year

Volume

20

Issue

3

Pages

475-488

Physical description

Dates

published
1 - 09 - 2013
online
08 - 10 - 2013

Contributors

  • Chair of Biotechnology and Molecular Biology, Opole University, ul. kard. B. Kominka 6, 45-032 Opole, Poland

References

  • [1] El-Sikaily A, El Nemr A, Khaled A, Abdelwehab O. Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon. J Hazard Mater. 2007;148:216-228.
  • [2] Gupta VK, Rastogi A, Saini VK, Jain N. Biosorption of copper(II) from aqueous solutions by Spirogyra species. J Colloid and Interface Sci. 2006;296:59-63. DOI:10.1016/j.jcis.2005.08.033[WoS][Crossref]
  • [3] Mudhoo A, Garg VK, Wang S. Removal of heavy metals by biosorption. Environ Chem Lett. 2012;10:109-117.[Crossref]
  • [4] Yoshida N, Ikeda R, Okuno T. Identifcation and characterization of heavy metal-resistant unicellular alga isolated from soil and its potential for phytoremediation. Bioresour Technol. 2006;97:1843-1849. DOI: 10.1016/j.biortech.2005.08.021.[Crossref]
  • [5] Apiratikul R, Pavasant P. Batch and column studies of biosorption of heavy metals by Caulerpa lentillifera. Bioresour Technol. 2008;99:2766-2777. DOI:10.1016/j.biortech.2007.06.036[Crossref][WoS]
  • [6] Pavasant P, Apiratikul R, Sungkhum V, Suthiparinyanont P, Wattanachira S, Marhaba TF. Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera. Bioresour Technol. 2006;97:2321-2329. DOI:10.1016/j.biortech.2005.10.032.[Crossref]
  • [7] Al-Shwafi NA, Rushdi AI. Heavy metal concentrations in marine green, brown, and red seaweeds from coastal waters of Yemen, the Gulf of Aden. Environ Geol. 2008;55:653-660. DOI: 10.1007/s00254-007-1015-0.[Crossref]
  • [8] Atici T, Ahiska S, Altindag A, Aydin D. Ecological effects of some heavy metals (Cd, Pb, Hg, Cr) pollution of phytoplanktonic algae and zooplanktonic organisms in Sarıyar Dam Reservoir in Turkey. African J Biotechnol. 2008;7:1972-1977.
  • [9] Benkdad A, Laissaoui A, Tornero MV, Benmansour M, Chakir E, Garrido IM, et al. Trace metals and radionuclides in macroalgae from Moroccan coastal waters. Environ Monit and Assess. 2011;182:317-324.DOI 10.1007/s10661-011-1878-0.[WoS][Crossref]
  • [10] Conti ME, Cecchetti G. A biomonitoring study: trace metals in algae and molluscs from Tyrrhenian coastal areas. Environ Res. 2003;93:99-112.
  • [11] Giusti L. Heavy metal contamination of brown seaweed and sediments from the UK coastline between the Wear river and the Tees river. Environ Inter. 2001;26:275-286.[Crossref]
  • [12] Kamala-Kannan S, Prabhu Dass Batvari B, Jae Lee K, Kannan N, Krishnamoorthy R, Shanthi K, et al. Assessment of heavy metals (Cd, Cr and Pb) in water, sediment and seaweed (Ulva lactuca) in the Pulicat Lake, South East India. Chemosphere 2008;71:1233-1240. DOI: 10.1016/j.chemosphere.2007.12.004.[WoS][Crossref]
  • [13] Kaonga CC, Chiotha SS, Monjerezi M, Fabiano E, Henry EM. Levels of cadmium, manganese and lead in water and algae; Spirogyra aequinoctialis. Inter J Environ Sci and Technol. 2008;5:471-478.[WoS][Crossref]
  • [14] Karadede-Akin H, Ünlü E. Heavy metal concentrations in water, sediment, fish and some benthic organisms from Tigris River, Turkey. Environ Monit and Assess. 2007;131:323-337. DOI: 10.1007/s10661-006-9478-0.[Crossref]
  • [15] Laib E, Leghouchi E. Cd, Cr, Cu, Pb, and Zn concentrations in Ulva lactuca, Codium fragile, Jania rubens, and Dictyota dichotomia from Rabta Bay, Jijel (Algeria). Environ Monit and Assess. 2012;184;1711-1718. DOI: 10.1007/s10661-011-2072-0.[WoS][Crossref]
  • [16] Melville F, Pulkownik A. Seasonal and spatial variation in the distribution of mangrove macroalgae in the Clyde River, Australia. Estuarine, Coastal and Shelf Science. 2007;71:683-690. DOI: 10.1016/j.ecss.2006.09.023.[Crossref][WoS]
  • [17] Strezov A, Nonova T. Environmental monitoring of heavy metals in Bulgarian Black Sea green algae. Environ Monit and Assess. 2005;105:99-110.[PubMed]
  • [18] Topcuoğlu S, Güven KC, Balkıs N, Kırbaşoğlu C. Heavy metal monitoring of marine algae from the Turkish Coast of the Black Sea, 1998-2000. Chemosphere. 2003;52:1683-1688.
  • [19] Pawlik-Skowrońska B. Tajemnice odporności glonów i sinic na toksyczne metale ciężkie [The algae in environments contaminated with heavy metals]. Kosmos. 2002;51:175-184.
  • [20] Feng D, Aldrich C. Adsorption of heavy metals by biomaterials derived from the marine alga Ecklonia maxima. Hydrometallurgy. 2004;73:1-10. DOI: 10.1016/S0304-386X(03)00138-5.[Crossref]
  • [21] Harris PO, Ramelow GJ. Binding of metal ions by particulate biomass derived from Chlorella vulgaris and Scenedesmus quadricauda. Environ Sci and Technol. 1990;24:220-228.[Crossref]
  • [22] Kaewsarn P, Yu Q. Cadmium(II) removal from aqueous solutions by pre-treated biomass of marine alga Padina sp. Environ Pollut. 2001;112:209-213.
  • [23] Yalçın E, Çavuşoğlu K, Maraş M, Bıyıkoğlu M. Biosorption of lead(II) and copper(II) metal ions on Cladophora glomerata (L.) Kütz. (Chlorophyta) algae: effect of algal surface modification. Acta Chimica Slovenica. 2008;55:228-232.
  • [24] Bulgariu D, Bulgariu L. Equilibrium and kinetics studies of heavy metal ions biosorption on green algae waste biomass. Bioresour Technol. 2012;103:489-493. DOI: 10.1016/j.biortech.2011.10.016.[WoS][Crossref]
  • [25] Tien CJ. Biosorption of metal ions by freshwater algae with different surface characteristics. Process Biochem. 2002;38:605-613. PII: S0032-9592(02)00183-8.[Crossref]
  • [26] Ajjabi LCh, Chouba L. Biosorption of Cu2+ and Zn2+ from aqueous solutions by dried marine green macroalga Chaetomorpha linum. J of Environ Manage. 2009;90:3485-3489. DOI: 10.1016/j.jenvman.2009.06.001.[WoS][Crossref]
  • [27] Ji L, Xie S, Feng J, Li Y, Chen L. Heavy metal uptake capacities by the common freshwater green alga Cladophora fracta. J Appl Phycol. 2012;24:979-983. DOI: 10.1007/s10811-011-9721-0.[WoS][Crossref]
  • [28] Lee Yi-Ch, Chang Sh-P. The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresour Technol. 2011;102:5297-5304. DOI: 10.1016/j.biortech.2010.12.103.[WoS][Crossref]
  • [29] Gupta VK, Rastogi A, Nayak A. Biosorption of nickel onto treated alga (Oedogonium hatei): Application of isotherm and kinetic models. J Colloid and Interface Sci. 2002;342:533-539. DOI: 10.1016/j.jcis.2009.10.074.[Crossref]
  • [30] Gupta VK, Rostogi A. Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp. - A comparative study. Colloid Surface B. 2008;64:170-178. DOI: 10.1016/j.colsurfb.2008.01.019.[WoS][Crossref]
  • [31] Saeed A, Iqbal M, Akhta MW. Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk). J Hazard Mater B. 2005;117:65-73. DOI: 10.1016/j.jhazmat.2004.09.008.[Crossref]
  • [32] Cabral JP. Copper toxicity to five Parmalia lichens in vitro. Environ and Experiment Botany. 2003;49:237-250.
  • [33] Herrero R, Lodeiro P, Rey-Castro C, Vilariño T, Sastre de Vicente EM. Removal of inorganic mercury from aqueous solutions by biomass of the marine macroalga Cystoseira baccata. Water Res. 2005;39:3199-3210. DOI: 10.1016/j.watres.2005.05.041.[Crossref]
  • [34] Kłos A, Rajfur M. Influence of hydrogen cations on kinetics and equilibria of heavy-metal sorption by algae - sorption of copper cations by the alga Palmaria palmate. J Appl Phycol. 2013;25(5):1387-1394. DOI: 10.1007/s10811-012-9970-6. [Crossref][WoS]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_eces-2013-0035
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.