Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 35 | 1 | 97-107

Article title

Hydrodynamic Characteristics of Mechanically Agitated Air - Aqueous Sucrose Solutions

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
The aim of the research presented in this paper was determination of power consumption and gas hold-up in mechanically agitated aerated aqueous low concentration sucrose solutions. Experimental studies were conducted in a vessel of diameter 0.634 m equipped with high-speed impellers (Rushton turbine, Smith turbine or A 315). The following operating parameters were changed: volumetric gas flow rate (expressed by superficial gas velocity), impeller speed, sucrose concentration and type of impeller. Based on the experiments results, impellers with a modified shape of blades, e.g. CD 6 or A 315, could be recommended for such gas-liquid systems. Power consumption was measured using strain gauge method. The results of gas holdup measurements have been approximated by an empirical relationship containing dimensionless numbers (Eq. (2)).

Publisher

Year

Volume

35

Issue

1

Pages

97-107

Physical description

Dates

published
1 - 3 - 2014
received
22 - 10 - 2013
online
25 - 4 - 2014
accepted
5 - 2 - 2014

Contributors

  • West Pomeranian University of Technology, Szczecin, Department of Chemical Engineering, al. Piastów 42, 71-065 Szczecin Poland

References

  • Adamiak R., 2005. Experimental studies of conditions for gas dispersion in liquid in the stirred tank on different scale. PhD Thesis, Politechnika Szczecińska, Szczecin (in Polish).
  • Adamiak R., Karcz J., 2007. Effects of type and number of impellers and liquid viscosity on the power characteristics of mechanically agitated gas-liquid systems. Chem. Pap., 61, 16-23. DOI: 10.2478/s11696-006-0089-6.[Crossref][WoS]
  • Ahmed S.U., Ranganathan P., Pandey A., Sivaraman S., 2010. Computational fluid dynamics modeling of gas dispersion in multi impeller bioreactor. J. Biosci. Bioeng., 109, 588-597. DOI: 10.1016/J.J.BIOSC.2009.11.014.[WoS][PubMed][Crossref]
  • Alves S.S., Maia C.I., Vasconcelos J.M.T., 2002. Experimental and modeling study of gas dispersion in a double turbine stirred tank. Chem. Eng. Sci., 57, 487-496. DOI:10.1016/S0009-2509(01)00400-6.[Crossref]
  • Ascanio G., Castro B., Galindo E., 2004. Measurement of power consumption in stirred vessls - A review. Chem. Eng. Res. Des., 82, 1282-1290. DOI:10.1205/cerd.82.9.1282.44164.[Crossref]
  • Bao Y., Yang J., Chen L., Gao Zh., 2012. Influence of the top impeller diameter on the gas dispersion in a sparged multi-impeller stirred tank. Ind. Eng. Chem. Res., 51, 12411−12420. DOI:10.1021/ie301818f.[Crossref][WoS]
  • Bouaifi M., Roustan M., 2001. Power consumption, mixing time and homogenisation energy in dual-impeller agitated gas-liquid reactors. Chem. Eng. Proc., 40, 87-95. DOI: 10.1016/So255-2701(00)00128-8.[Crossref]
  • Bouaifi M., Hebrard G., Bastoul D., Roustan M., 2001. A comparative study of gas hold-up, bubble size, interfacial area and mass transfer coefficients in stirred gas-liquid reactors and bubble columns. Chem. Eng. Proc., 40, 97-111. DOI: 10.1016/S0255-2701(00)00129-x.[Crossref]
  • Cudak M., 2011. Process characteristics for the mechanically agitated gas-liquid systems in the turbulent fluid flow. Przem. Chem., 90, 1628-1632 (in Polish).
  • Fasano J.B., Myers K.J., Janz E.E., 2011. Effect of geometric variations on the performance of gas dispersion impellers with semicircular blades. Can. J. Chem. Eng., 89, 961-968. DOI: 10.10.02/cjce.20459.[WoS]
  • Garcia-Ochoa F., Gomez E., 2004. Theoretical prediction of gas-liquid mass transfer coefficient, specific area and hold up in sparger stirred tanks. Chem. Eng. Sci., 59, 2489-2501. DOI: 10.1016/j.ces.2004.02.009.[Crossref]
  • Garcia-Ochoa F., Gomez E., 2009. Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview. Biotechnol. Adv., 27, 153-176 DOI: 10.1016/j.biotechadv.2008.10.006.[Crossref]
  • Gill N.K, Appleton M., Baganz F., Lye G.J., 2008. Quantification of power consumption and oxygen transfer characteristics of a stirred miniature bioreactor for predictive fermentation scale-up. Biotechnol. Bioeng., 100, 1144-1155. DOI:10.1002/bit 21852.[PubMed][Crossref][WoS]
  • Hu B., Pacek A.W., Stitt E.H., Nienow A.W., 2005. Bubble sizes in agitated air-alcohol systems with and without particles: Turbulent and transitional flow. Chem. Eng. Sci., 60, 6371-6377. DOI: 10.1016/j.ces.2005.02.006.[Crossref]
  • Kamieński J., 2004. Agitation of multiphase systems. WNT, Warszawa (in Polish).
  • Kamieński J., Niżnik J., 2001. Gas hold-up for gas-liquid system agitated with dual impellers. Inż. Chem. Proc., 22, 3C, 597-603 (in Polish).
  • Kamieński J., Niżnik J., 2002. The impact of the second impeller on the effects of gas dispersion in liquid. Inż. Ap. Chem., 41, 33, 4s, 64-65 (in Polish).
  • Karcz J., 1998. Studies of gas hold-up for gas-liquid in a slender vessel with single or dual disc turbine impellers.
  • Inż. Chem. Proc., 19, 2, 335- 342.
  • Karcz J., Siciarz R., 2001. Studies of power consumption for gas-liquid systems in the stirred tank on different scale. Inż. Chem. Proc., 22, 3C, 645-652 (in Polish).
  • Karcz J., Siciarz R., Bielka I., 2004. Gas hold-up in a reactor with dual system of impellers. Chem. Pap., 58, 404-409.
  • Kerdouss F., Bannari A., Proulx P., 2006. CFD modeling of gas dispersion and bubble size in a double turbine stirred tank. Chem. Eng. Sci., 61, 3313-3322. DOI: 10.1016/j.ces.2005.11.061.[Crossref]
  • Laos A.K., Kirs B.E., Kikkas C.A., Paalme D.T., 2007. Crystallization of the saturated sucrose solution in the presence of fructose, glucose, and corn syrup. 6th European Congress of Chemical Engineering, Copenhagen, Denmark, 16-21 September 2007.
  • Major-Godlewska M., Karcz J., 2011. Process characteristics for gas-liquid system agitated in a vessel equipped with a turbine impeller and tubular baffles. Chem. Pap., 65, 132-138. DOI: 10.2478//S11696-010-0080-0.[Crossref][WoS]
  • Markopoulos J., Pantuflas E., 2001. Power consumption in gas-liquid contactors agitated by double-stage Rushton turbines. Chem. Eng. Technol., 24, 1147-1150. DOI: 10.1002/1521-4125(200111).[Crossref]
  • Martin M., Montes F.J., Galán M.A., 2008a. Bubbling process in stirred tank reactors I: Agitator effect on bubble size, formation and rising. Chem. Eng. Sci., 63, 3212-3222. DOI: 10.1016/j.ces.2008.03.028.[Crossref][WoS]
  • Martin M., Montes F.J., Galán M.A., 2008b. Bubbling process in stirred tank reactors II: Agitator effect on the mass transfer rates. Chem. Eng. Sci., 63, 3223-3234. DOI: 10.1016/j.ces.2008.03.035.[WoS][Crossref]
  • Montante G., Horn D., Paglianti A., 2008. Gas-liquid flow and bubble size distribution in stirred tanks. Chem. Eng. Sci., 63, 2107-2118. DOI: 10.1016/j.ces.2008.01.005.[Crossref]
  • Montante G., Paglianti A., Magelli F., 2007. Experimental analysis and computational modeling of gas-liquid stirred vessels. Chem. Eng. Res. Des., 85, 647-653. DOI: 10.1205/cherd06141.[Crossref]
  • Moucha T., Linek V., Prokopowa E., 2003. Gas hold-up, mixing time and gas-liquid volumetric mass transfer coefficient of various multiple-impeller configurations: Rushton turbine, pitched blade and techmix impeller and their combinations. Chem. Eng. Sci., 58, 1839-1846. DOI: 10.1016/S0009-2509(02)00682-6.[Crossref]
  • Newell R., Grano S. 2006a. Hydrodynamics and scale up in Rushton turbine flotation cells: Part 1. Cell hydrodynamics. Int. J. Miner. Process., 81, 224-236 DOI: 10.1016/j.minpro.2006.06.007.[WoS][Crossref]
  • Newell R., Grano S., 2006b. Hydrodynamics and scale up in Rushton turbine flotation cells: Part 2. Flotation scale-up for laboratory and pilot cells. Int. J. Miner. Process., 81, 65-78. DOI: 10.1016/j.minpro.2006.07.002.
  • Nienow A.W., Lilly M.D., 1996. Gas-liquid mixing studies: a comparison of Rushton turbines with some modern impellers. Trans IChemE, 74A, 417-423. Paglianti A., 2002. Simple model to evaluate loading/flooding transition in aerated vessels stirred by Rushton disc turbines. Can. J. Chem. Eng., 80, 4, 1-5. DOI: 10.1002/cjce.5450800409.[Crossref]
  • Raposo S., Lima-Costa M.E., 2012. Effects of the hydrodynamic environment and oxygen mass transfer on plant cell growth and milk-clotting protease production in a stirred tank reactor. Eng. Life Sci., 12, 441-449. DOI: 10.1002/elsc.201100087.[Crossref][WoS]
  • Roman R.V., Tudose R.Z., 1997. Studies on transfer processes in mixing vessels: Effect of particles on gas-liquid hydrodynamics using modified Rushton turbine agitators. Bioprocess Eng., 16, 135-144.[Crossref]
  • Scargiali F., D’Orazio A., Grisafi F., Brucato A., 2007. Modelling and simulation of gas-liquid hydrodynamics in mechanically stirred tanks. Chem. Eng. Res. Des., 85, 637-646. DOI: 10,1205/cherd06243.[WoS]
  • Shewale S.D, Pandit A.B., 2006. Studies in multiple impeller agitated gas-liquid contactors. Chem. Eng. Sci., 61, 489-504. DOI: 10.1016/j.ces.2005.04.078.[Crossref]
  • Stręk F., 1981. Agitation and agitated vessels. WNT, Warszawa (in Polish).
  • Szewczyk K.W., 2003. The biochemical technology. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa (in Polish).
  • Warmoeskerken M.M.C.G., 1986. Gas-liquid dispersing characteristics of turbine agitators. PhD thesis, Technische Hogeschool Delft, The Netherlands.
  • Van’t Riet K., 1975. Turbine agitator hydrodynamics and dispersion performance. PhD thesis, Technische Hogeschool Delft, The Netherlands.
  • Vasconcelos J.M.T., Orvalho S.C.P., Rodrigues A.M.A.F., Alves S.S., 2000. Effect of blade shape on the performance of six-bladed disk turbine impellers. Ind. Eng. Chem. Res.,, 39, 203-213. DOI:10.1021/ie9904145.[Crossref]
  • Vilaca P.R., Badino Jr. A.C., Facciotti M.C.R., Schmidell W., 2000. Determination of power consumption and volumetric oxygen transfer coefficient in bioreactors. Bioprocess Eng., 22, 261-265. DOI: 10.1007/S004490050730.[Crossref]
  • Vinnett Z., Contreras F., Yianatos J., 2012. Gas dispersion pattern in mechanical flotation cells. Miner. Eng., 26, 80-85. DOI: 10.1016/j.mineng.2011.11.003.[WoS][Crossref]
  • Yianatos J., Contreras F., Diaz F., 2010. Gas hold-up and RTD measurement in an industrial flotation cell. Miner. Eng., 23, 125-130. DOI: 10.1016/j.mineng.2009.11.003. [Crossref][WoS]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_cpe-2014-0007
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.