Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 1 | 1 |

Article title

Biocomputing, Biosensing and Bioactuation
Based on Enzyme Biocatalyzed Reactions

Content

Title variants

Languages of publication

EN

Abstracts

EN
The focus of this review paper is on the design
and implementation of smart ‘Sense-and-Treat’ systems
using enzyme-biocatalytic systems. These systems were
used to perform biomolecular computing and they were
functionally integrated with signal responsive materials
aiming towards their biomedical use. Electrode interfaces,
functionalized with signal-responsive materials,
find applications in biocomputing, biosensing, and,
specifically, triggered release of bioactive substances.
‘Sense-and-Treat’ systems require multiple components
working together, including biosensors, actuators, and
filters, in order to achieve closed-loop and autonomous
operation. In general, biochemical logic networks were
developed to process single biochemical or chemical
inputs as well as multiple inputs, responding to nonphysiological
(for concept demonstration purposes) and
physiological signals (for injury detection or diagnosis).
Actuation of drug-mimicking release was performed using
the responsive material iron-cross-linked alginate with
entrapped biomolecular species, responding to physical,
chemical or biochemical signals.

Publisher

Journal

Year

Volume

1

Issue

1

Physical description

Dates

received
21 - 8 - 2014
online
3 - 10 - 2014
accepted
9 - 9 - 2014

Contributors

author
  • Department of Chemistry and
    Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
author
  • Department of Chemistry and
    Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA

References

  • [1] Adamatzky A., De Lacy Costello B., and Asai T., Reaction-Diffusion Computers, 2005, Elsevier, Amsterdam.
  • [2] De Silva A.P., Uchiyama S., Vance T.P., and Wannalerse B.,A supramolecular chemistry basis for molecular logic andcomputation, Coord. Chem. Rev., 2007, 251, 1623-1632.
  • [3] De Silva A.P. and Uchiyama S., Molecular logic and computing,Nat. Nanotechnol., 2007, 2, 399-410.[Crossref]
  • [4] Szacilowski K., Digital information processing in molecularsystems, Chem. Rev., 2008, 108, 3481-3548.[Crossref]
  • [5] Credi A., Molecules that make decisions, Angew. Chem. Int.Ed., 2007, 46, 5472-5475.[Crossref]
  • [6] Pischel U., Digital operations with molecules - Advances,challenges, and perspectives, Austral. J. Chem., 2010, 63,148-164.
  • [7] Andreasson J. and Pischel U., Smart molecules atwork-mimicking advanced logic operations, Chem. Soc. Rev.,2010, 39, 174-188.[Crossref]
  • [8] Baron R., Onopriyenko A., Katz E., Lioubashevski O., WillnerI., Wang S., and Tian H., An electrochemical/photochemicalinformation processing system using a monolayer-functionalizedelectrode, Chem. Commun., 2006, 2147-2149.[Crossref]
  • [9] Katz E. and Willner I., A quinone-functionalized monolayerelectrode in conjunction with hydrophobic magneticnanoparticles acts as a “Write-Read-Erase” information storagesystem, Chem. Commun., 2005, 5641–5643.[Crossref]
  • [10] Halámek J., Tam T.K., Chinnapareddy S., Bocharova V., andKatz E., Keypad lock security system based on immune-affinityrecognition integrated with a switchable biofuel cell, J. Phys.Chem. Lett., 2010, 1, 973-977.[Crossref]
  • [11] Niazov T., Baron R., Katz E., Lioubashevski O., and WillnerI., Concatenated logic gates using four coupled biocatalystsoperating in series, Proc Natl Acad USA, 2006, 103,17160–17163.
  • [12] Strack G., Pita M., Ornatska M., and Katz E., Boolean logicgates using enzymes as input signals, ChemBioChem, 2008, 9,1260-1266.[Crossref]
  • [13] Baron R., Lioubashevski O., Katz E., Niazov T., and Willner I.,Logic gates and elementary computing by enzymes, J. Phys.Chem. A, 2006, 110, 8548-8553.[Crossref]
  • [14] Sivan S. and Lotan N., A biochemical logic gate using anenzyme and its inhibitor. Part I: The inhibitor as switchingelement, Biotechnol. Prog., 1999, 15, 964-970.[Crossref]
  • [15] Sivan S., Tuchman S., and Lotan N., A biochemical logic gateusing an enzyme and its inhibitor. Part II: The logic gate,Biosystems, 2003, 70, 21-33.[Crossref]
  • [16] Deonarine A.S., Clark S.M., and Konermann L., Implementationof a multifunctional logic gate based on folding/unfoldingtransitions of a protein, Future Gener. Comp. Sy., 2003, 19,87-97.
  • [17] Ashkenazi G., Ripoll D.R., Lotan N., and Scheraga H.A., Amolecular switch for biochemical logic gates: Conformationalstudies, Biosens. Bioelectron., 1997, 12, 85-95.[Crossref]
  • [18] Unger R. and Moult J., Towards computing with proteins,Proteins, 2006, 63, 53-64.[Crossref]
  • [19] Hild W., Pollinger K., Caporale A., Cabrele C., Keller M., PluymN., Buschauer A., Rachel R., Tessmar J., Breunig M., GoepferichA., G protein-coupled receptors function as logic gates fornanoparticle binding and cell uptake, Proc. Natl. Acad. USA.,2010, 107, 10667-10672.[Crossref]
  • [20] Stojanovic M.N., Stefanovic D., LaBean T., and Yan H.,Computing with nucleic acids, in: Bioelectronics: From Theoryto Applications, I. Willner and E. Katz, Eds., 2005, Wiley-VCH,Weinheim.
  • [21] Saghatelian A., Volcker N.H., Guckian K.M., Lin V.S.Y., andGhadiri M.R., DNA-based photonic logic gates: AND, NAND, andINHIBIT, J. Am. Chem. Soc., 2003, 125, 346-347.[Crossref]
  • [22] Xu J. and Tan G.J., A review on DNA computing, J. Comput.Theor. Nanoscience, 2007, 4, 1219-1230.[Crossref]
  • [23] Elbaz J., Lioubashevski O., Wang F., Remacle F., Levine R.D., andWillner I., DNA computing circuits using libraries of DNAzymesubunits, Nature Nanotechnol., 2010, 5, 417-422.
  • [24] Pita M., Zhou J., Manesh K.M., Halámek J., Katz E., and WangJ., Enzyme logic gates for assessing physiological conditionsduring an injury: Towards digital sensors and actuators, Sens.Actuat. B, 2009, 139, 631-636.
  • [25] Manesh K.M., Halámek J., Pita M., Zhou J., Tam T.K., SanthoshP., Chuang M.-C., Windmiller J.R., Abidin D., Katz E., and WangJ., Enzyme logic gates for the digital analysis of physiologicallevel upon injury, Biosens.Bioelectron., 2009, 24, 3569-3574.[Crossref]
  • [26] Halámek J., Windmiller J.R., Zhou J., Chuang M.-C., SanthoshP., Strack G., Arugula M.A., Chinnapareddy S., Bocharova V.,Wang J., and Katz E., Multiplexing of injury codes for the paralleloperation of enzyme logic gates, Analyst, 2010, 135, 2249-2259.[Crossref]
  • [27] Wang J. and Katz E., Digital biosensors with built-in logic forbiomedical applications – Biosensors based on biocomputingconcept, Anal. Bioanal. Chem., 2010, 398, 1591-1603.
  • [28] Wang J., In vivo glucose monitoring: Towards ‘sense and act’feedback-loop individualized medical systems, Talanta, 2008,75, 636-641.[Crossref]
  • [29] Gdor E., Katz E., and Mandler D., Biomolecular AND logic gatebased on immobilized enzymes with precise spatial separationcotrolled by electrochemical scanning microscopy, J. Phys.Chem. C, 2013, 117, 16058-16065.
  • [30] Bocharova V., Zavalov O., MacVittie K., Arugula M.A., GuzN.V., Dokukin M.E., Halámek J., Sokolov I., Privman V., KatzE., A biochemical logic approach to biomarker-activated drugrelease, J. Mater. Chem., 2012, 22, 19709-19717.[Crossref]
  • [31] Rafael S.P., Vallee-Bélisle A., Fabregas E., Plaxco K., PalleschiG., and Ricci F., Employing the metabolic „branch point effect“to generate an all-or-none, digital-like response in enzymaticoutputs and enzyme-based sensors, Anal. Chem., 2012, 84,1076–1082.[Crossref]
  • [32] Privman V., Halámek J., Arugula M.A., Melnikov D., BocharovaV., and Katz E., Biochemical filter with sigmoidal response:increasing the complexity of biomolecular logic, J. Phys. Chem.B, 2010, 114, 14103–14109.[Crossref]
  • [33] Strack G., Chinnapareddy S., Volkov D., Halámek J., Pita M.,Sokolov I., and Katz E., Logic networks based on immunorecognitionprocesses, J. Phys. Chem. B, 2009, 113, 12154-12159.[Crossref]
  • [34] Tam T.K., Strack G., Pita M., and Katz E., Biofuel cell logicallycontrolled by antigen-antibody recognition: towards immune regulated bioelectronic devices, J. Am. Chem. Soc., 2009, 131,11670-11671.[Crossref]
  • [35] Clark L.C., Jr and Lyons C., Electrode systems for continuousmonitoring in cardiovascular surgery, Ann. N. Y. Acad. Sci.,1962, 102, 29-45.
  • [36] Ronkainen N.J., Halsall H.B., and Heineman W.R., Electrochemicalbiosensors, Chem. Soc. Rev., 2010, 39, 1747-1763.[Crossref]
  • [37] Borisov S.M. and Wolfbeis O.S., Optical biosensors, Chem.Rev., 2008, 108, 423-461.[Crossref]
  • [38] Piezoelectric Sensors, Steinem C. and Janshoff A., Eds., inseries: Springer Series on Chemical Sensors and Biosensors,Wolfbeis O.S., Series Ed., 2010, Springer, Berlin, Heidelberg.
  • [39] Wang J., Electrochemical glucose biosensors, Chem. Rev.,2008, 108, 814-825.[Crossref]
  • [40] Schena M., Microarray Analysis, 2002, Wiley-Liss, Hoboken.
  • [41] Biomolecular Information Processing - From Logic Systems toSmart Sensors and Actuators, Katz E., Ed., 2012, Wiley-VCH,Weinheim, Germany.
  • [42] Katz E. and Privman V., Enzyme-based logic systems forinformation processing, Chem. Soc. Rev., 2010, 39, 1835-1857.[Crossref]
  • [43] Stuart M.A.C., Huck W.T.S., Genzer J., Muller M., Ober C.,Stamm M., Sukhorukov G.B., Szleifer I., Tsukruk V.V., UrbanM., Winnik F., Zauscher S., Luzinov I., and Minko S., Emergingapplications of stimuli-responsive polymer materials, NatureMater., 2010, 9, 101-113.[Crossref]
  • [44] Katz E., Minko S., Halámek J., MacVittie K., and Yancey K.,Electrode interfaces switchable by physical and chemicalsignals for biosensing, biofuel, and biocomputing applications,Anal. Bioanal. Chem., 2013, 405, 3659-3672.
  • [45] Privman M., Tam T.K., Bocharova V., Halámek J., Wang J., andKatz E., Responsive interface switchable by logically processedphysiological signals – Towards “smart” actuators for signalamplification and drug delivery, ACS Appl. Mater. Interfaces,2011, 3, 1620–1623.[Crossref]
  • [46] Wang X., Zhou J., Tam T.K., Katz E., and Pita M., Switchableelectrode controlled by Boolean logic gates using enzymes asinput signals, Bioelectrochemistry, 2009, 77, 69-73.[Crossref]
  • [47] Katz E. and Pita M., Biofuel cells controlled by logicallyprocessed biochemical signals: Towards physiologicallyregulated bioelectronic devices, Chem. Eur. J., 2009, 15,12554-12564.[Crossref]
  • [48] Strack G., Bocharova V., Arugula M.A., Pita M., Halámek J.,and Katz E., Artificial muscle reversibly controlled by enzymereactions, J. Phys. Chem. Lett., 2010, 1, 839-843.[Crossref]
  • [49] Zhou M., Zhou N., Kuralay F., Windmiller J.R., ParkhomovskyS., Valdés-Ramírez G., Katz E., and Wang J., A self-powered„Sense-Act-Treat“ system that is based on a biofuel cell andcontrolled by Boolean logic, Angew. Chem. Int. Ed. 2012, 51,2686-2689.[Crossref]
  • [50] Katz E., Wang J., Privman M., and Halámek J., Multianalytedigital enzyme biosensors with built-in Boolean logic, Anal.Chem., 2012, 84, 5463-5469.[Crossref]
  • [51] Traitel T., Goldbart R., and Kost J., Smart polymers forresponsive drug-delivery systems, J. Biomater. Sci. PolymerEdn., 2008, 19, 755-767.[Crossref]
  • [52] Gil B., Kahan-Hanum M., Skirtenko N., Adar R., and ShapiroE., Detection of multiple disease indicators by an autonomousbiomolecular computer, Nano Lett., 2011, 11, 2989-2996.[Crossref]
  • [53] Biomolecular Computing – From Logic Systems to SmartSensors and Actuators, Katz E., Ed., 2012, Willey-VCH,Weinheim, Germany.
  • [54] Melnikov D., Strack G., Zhou J., Windmiller J.R., Halámek J.,Bocharova V., Chuang M.-C., Santhosh P., Privman V., WangJ., and Katz E., Enzymatic AND logic gates operated underconditions characteristic of biomedical applications, J. Phys.Chem. B, 2010, 114, 12166–12174.[Crossref]
  • [55] Zhou J., Halámek J., Bocharova V., Wang J., and Katz E.,Bio-logic analysis of injury biomarker patterns in human serumsamples, Talanta, 2011, 83, 955–959.[Crossref]
  • [56] Halámek J., Zhou J., Halámková L., Bocharova V., PrivmanV., Wang J., and Katz E., Biomolecular filters for improvedseparation of output signals in enzyme logic systems appliedto biomedical analysis, Anal. Chem., 2011, 83, 8383–8386.[Crossref]
  • [57] Halámek J., Zavalov O., Halámková L., Korkmaz S., PrivmanV., and Katz E., Enzyme-based logic analysis of biomarkers atphysiological concentrations: and gate with double-sigmoid„filter“ response, J. Phys. Chem. B, 2012, 116, 4457–4464.[Crossref]
  • [58] Pita M., Privman V., Arugula M.A., Melnikov D., BocharovaV., and Katz E., Towards biochemical filters with a sigmoidalresponse to pH changes: Buffered biocatalytic signaltransduction, Phys. Chem. Chem. Phys., 2011, 13, 4507–4513.[Crossref]
  • [59] Privman V., Control of noise in chemical and biochemicalinformation processing, Isr. J. Chem., 2011, 51, 118−131.
  • [60] Ezziane Z., DNA computing: Applications and challenges,Nanotechnology, 2006, 17, R27-R39.[Crossref]
  • [61] Li Z., Rosenbaum M.A., Venkataraman A., Tam T.K., Katz E.,and Angenent L.T., Bacteria-based AND logic gate: A decisionmakingand self-powered biosensor, Chem. Commun., 2011, 47,3060-3062.[Crossref]
  • [62] Tan K.-K., Bang S.-L., Vijayan A., and Chiu M.-T., Hepaticenzymes have a role in the diagnosis of hepatic injury afterblunt abdominal trauma, Injury, 2009, 40, 978-983.[Crossref]
  • [63] Khalili H., Dayyeh B.A., and Friedman L.S., Assessment ofliver function in clinical practice, in: Chronic Liver Failure:Mechanisms and Management (Clinical Gastroenterology),Ginès P., Kamath P.S., and Arroyo V., Eds., 2010, Humana Press,New York.
  • [64] Zen J.M., Kumar A.S., and Tsai D.-M., Recent updates ofchemically modified electrodes in analytical chemistry, Electroanalysis,2003, 15, 1073-1087.[Crossref]
  • [65] Handbook of Fuel Cells - Fundamentals, Technology,Applications, Vielstich W., Gasteiger H., and Lamm A., Eds.,2003, Wiley, Chichester, England.
  • [66] Rusling J.F. and Forster R.J., Electrochemical catalysis withredox polymer and polyion–protein films, J. Colloid InterfaceSci., 2003, 262, 1-15.
  • [67] Willner I. and Katz E., Integration of layered redox proteins andconductive supports for bioelectronic applications, Angew.Chem. Int. Ed., 2000, 39, 1180-1218.[Crossref]
  • [68] Gooding J.J., Advances in interfacial design for electrochemicalbiosensors and sensors: Aryl diazonium salts for modifyingcarbon and metal electrodes, Electroanal., 2008, 20, 573-582.[Crossref]
  • [69] Moehlenbrock M.J. and Minteer S.D., Extended lifetime biofuelcells, Chem. Soc. Rev., 2008, 37, 1188-1196.[Crossref]
  • [70] Barton S.C., Gallaway J., and Atanassov P., Enzymatic biofuelcells for implantable and microscale devices, Chem. Rev.,2004, 104, 4867-4886.[Crossref]
  • [71] Tam T.K., Ornatska M., Pita M., Minko S., and Katz E., Polymerbrush-modified electrode with switchable and tunable redoxactivity for bioelectronic applications, J. Phys. Chem. C, 2008,112, 8438-8445.[Crossref]
  • [72] Willner I., Lion-Dagan M., Marx-Tibbon S., and Katz E., Bioelectrocatalyzedamperometric transduction of recorded opticalsignals using monolayer-modified Au-electrodes, J. Am. Chem.Soc., 1995, 117, 6581-6592.[Crossref]
  • [73] Jimenez J., Sheparovych R., Pita M., Narvaez Garcia A.,Dominguez E., Minko S., and Katz E., Magneto-inducedself-assembling of conductive nanowires for biosensorapplications, J. Phys. Chem. C, 2008, 112, 7337-7344.[Crossref]
  • [74] Tam T.K., Pita M., Trotsenko O., Motornov M., Tokarev I.,Halámek J., Minko S., and Katz E., Reversible “closing” of anelectrode interface functionalized with a polymer brush by anelectrochemical signal, Langmuir, 2010, 26, 4506-4513.[Crossref]
  • [75] Tokarev I., Orlov M., Katz E., and Minko S., An electrochemicalgate based on a stimuli-responsive membrane associated withan electrode surface, J. Phys. Chem. B, 2007, 111, 12141-12145.[Crossref]
  • [76] Willner I. and Katz E., Magnetic control of electrocatalytic andbioelectrocatalytic processes, Angew. Chem. Int. Ed., 2003, 42,4576-4588.[Crossref]
  • [77] Katz E., Baron R., and Willner I., Magnetoswitchable electrochemistrygated by alkyl-chain-functionalized magneticnanoparticles: Control of diffusional and surface-confinedelectrochemical processes, J. Am. Chem. Soc., 2005, 127,4060-4070.[Crossref]
  • [78] Katz E., Sheeney-Haj-Ichia L., Basnar B., Felner I., and WillnerI., Magnetoswitchable controlled hydrophilicity/hydrophobicityof electrode surfaces using alkyl-chain-functionalized magneticparticles: Application for switchable electrochemistry,Langmuir, 2004, 20, 9714-9719.[Crossref]
  • [79] Katz E., Sheeney-Haj-Ichia L., and Willner I., Magnetoswitchableelectrocatalytic and bioelectrocatalytictransformations, Chem. Eur. J., 2002, 8, 4138-4148.[Crossref]
  • [80] Wang J. and Kawde A.N., Magnetic-field stimulated DNAoxidation, Electrochem. Commun., 2002, 4, 349-352.[Crossref]
  • [81] Wang J., Adaptive nanowires for on-demand control of electrochemicalmicrosystems, Electroanalysis, 2008, 20, 611-615.[Crossref]
  • [82] Laocharoensuk R., Bulbarello A., Mannino S., and WangJ., Adaptive nanowire–nanotube bioelectronic system foron-demand bioelectrocatalytic transformations, Chem.Commun., 2007, 3362-3364.[Crossref]
  • [83] Loaiza O.A., Laocharoensuk R., Burdick J., Rodriguez M.C.,Pingarron J.M., Pedrero M., and Wang J., Adaptive orientation ofmultifunctional nanowires for magnetic control of bioelectrocatalyticprocesses, Angew. Chem. Int. Ed., 2007, 46, 1508-1511.[Crossref]
  • [84] Wang J., Scampicchio M., Laocharoensuk R., Valentini F.,Gonzalez-Garcia O., and Burdick J., Magnetic tuning ofthe electrochemical reactivity through controlled surfaceorientation of catalytic nanowires, J. Am. Chem. Soc., 2006,128, 4562-4563.[Crossref]
  • [85] Vetter K.J., Electrochemical Kinetics: Theorectical Aspects,1967, Academic Press, New York.
  • [86] Diamond D. and McKervey M.A., Calixarene-based sensingagents, Chem. Soc. Rev., 1996, 25, 15-24.[Crossref]
  • [87] Yang D.H., Ju M.-J., Maeda A., Hayashi K., Toko K., Lee S.-W.,and Kunitake T., Design of highly efficient receptor sites bycombination of cyclodextrin units and molecular cavity in TiO2ultrathin layer, Biosens. Bioelectron., 2006, 22, 388-392.
  • [88] Gabai R., Sallacan N., Chegel V., Bourenko T., Katz E., andWillner I., Characterization of the swelling of acrylamidophenylboronicacid−acrylamide hydrogels upon interaction withglucose by faradaic impedance spectroscopy, chronopotentiometry,quartz-crystal microbalance (QCM), and surfaceplasmon resonance (SPR) Experiments, J. Phys. Chem. B, 2001,105, 8196-8202.[Crossref]
  • [89] Pita M., Minko S., and Katz E., Enzyme-based logic systems andtheir applications for novel multi-signal-responsive materials,J. Mater Sci: Materials in Medicine, 2009, 20, 457–462.
  • [90] Minko S., Katz E., Motornov M., Tokarev I., and Pita M.,Materials with built-in logic, J. Comput. Theor. Nanosci., 2011,8, 356–364.[Crossref]
  • [91] Temtem M., Pompeu D., Jaraquemada G., Cabrita E.J., CasimiroT., and Aguiar-Ricardo A., Development of PMMA membranesfunctionalized with hydroxypropyl-β-cyclodextrins forcontrolled drug delivery using a supercritical CO2-assistedtechnology, Int. J. Pharm., 2009, 376, 110–115.
  • [92] Sukhorukov G.B., Rogach A.L., Zebli B., Liedl T., Skirtach A.G.,Köhler K., Antipov A.A., Gaponik N., Susha A.S., WinterhalterM., and Parak W.J., Nanoengineered polymer capsules: tools fordetection, controlled delivery, and site-specific manipulation,Small, 2005, 1, 194–200.[Crossref]
  • [93] Delcea M., Möhwald H., and Skirtach A.G., Stimuli-responsiveLbL capsules and nanoshells for drug delivery, Adv. DrugDelivery Rev., 2011, 63, 730–747.[Crossref]
  • [94] Bagaria H.G. and Wong M.S., Polyamine–salt aggregateassembly of capsules as responsive drug delivery vehicles, J.Mater. Chem., 2011, 21, 9454–9466.[Crossref]
  • [95] Qin G., Li Z., Xia R., Li F., O‘Neill B.E., Goodwin J.T., KhantH.A., Chiu W., and Li K.C., Partially polymerized liposomes:Stable against leakage yet capable of instantaneous releasefor remote controlled drug delivery, Nanotechnology, 2011, 22,article #155605.[Crossref]
  • [96] Adlakha-Hutcheon G., Bally M.B., Shew C.R., and Madden T.D.,Controlled destabilization of a liposomal drug delivery systemenhances mitoxantrone antitumor activity, Nat. Biotechnol.,1999, 17, 775–779.
  • [97] Donati I. and Paoletti S., in: Alginates: Biology andApplications, Series: Microbiology Monographs, Rehm B.H.A.,Ed., 2009, Springer, Dordrecht.
  • [98] Chan A.W., and Neufeld R.J., Tuneable semi-synthetic networkalginate for absorptive encapsulation and controlled release ofprotein therapeutics, Biomaterials, 2010, 31, 9040-9047.[Crossref]
  • [99] Pescosolido L., Piro T., Vermonden T., Coviello T., Alhaique F.,Hennink W.E., and Matricardi P., Biodegradable IPNs based onoxidized alginate and dextran-HEMA for controlled release ofproteins, Carbohydr. Polym., 2011, 86, 208-213.[Crossref]
  • [100] Barrias C.C., Lamghari M., Granja P.L., Miranda M.C.S.,and Barbosa M.A., Biological evaluation of calcium alginatemicrospheres as a vehicle for the localized delivery of atherapeutic enzyme, J. Biomed. Mater. Res., Part A, 2005, 74,545-552.[Crossref]
  • [101] Krebs M.D., Salter E., Chen E., Sutter K.A., and Alsberg E.,Calcium phosphate-DNA nanoparticle gene delivery fromalginate hydrogels induces in vivo osteogenesis, J. Biomed.Mater. Res., Part A, 2010, 92, 1131-1138.
  • [102] Jiang G., Min S.-H., Oh E.J., and Hahn S.K., DNA/PEI/Alginate polyplex as an efficient in vivo gene delivery system,Biotechnol. Bioprocess Eng. 2007, 12, 684-689.[Crossref]
  • [103] Dey K. and Roy P., Degradation of chloroform by immobilizedcells of Bacillus sp. in calcium alginate beads, Biotechnol.Lett., 2011, 33, 1101-1105.[Crossref]
  • [104] Hoesli C.A., Raghuram K., Kiang R.L.J., Mocinecová D., Hu X.,Johnson J.D., Lacík I., Kieffer T.J., and Piret J.M., Pancreatic cellimmobilization in alginate beads produced by emulsion andinternal gelation, Biotechnol. Bioeng., 2011, 108, 424-434.[Crossref]
  • [105] Jin Z., Güven G., Bocharova V., Halámek J., Tokarev I., MinkoS., Melman A., Mandler D., and Katz E., Electrochemicallycontrolled drug-mimicking protein release from iron-alginatethin-films associated with an electrode, ACS Appl. Mater.Interfaces, 2012, 4, 466-475.[Crossref]
  • [106] Draget K.I., Braek G.S., and Smidsrod O., Alginic acid gels: theeffect of alginate chemical composition and molecular weight,Carbohydr. Polym. 1994, 25, 31−38.[Crossref]
  • [107] Morch Y.A., Donati I., Strand B.L., and Skjak-Braek G., Effect ofCa2+, Ba2+, and Sr2+ on alginate microbeads, Biomacromolecules,2006, 7, 1471−1480.
  • [108] Sreeram K.J., Shrivastava H.Y., and Nair B.U., Studies onthe nature of interaction of iron(III) with alginates, BBA-Gen.Subjects 2004, 1670, 121−125.
  • [109] Li L.B., Fang Y.P., Vreeker R., and Appelqvist I., Reexaminingthe egg-box model in calcium-alginate gels with X-raydiffraction, Biomacromolecules, 2007, 8, 464−468.[Crossref]
  • [110] Narayanan R.P., Melman G., Letourneau N.J., Mendelson N.L.,and Melman A., Photoderadable iron(III) cross-linked alginategels, Biomacromolecules, 2012, 13, 2465-2471.[Crossref]
  • [111] Vandenbossche G.M.R., Van Oostveldt P.V., Demeester J., andRemon J.-P., The molecular weight cut-off of microcapsules isdetermined by the reaction between alginate and polylysine,Biotechnol. Bioeng. 1993, 42, 381-386.[Crossref]
  • [112] Kosourov S.N. and Seibert M., Hydrogen photoproductionby nutrient-deprived Chlamydomonas reinhardtii cellsimmobilized within thin alginate films under aerobic andanaerobic conditions, Biotechnol. Bioeng. 2009, 102, 50-58.[Crossref]
  • [113] Tokarev I., Tokareva I., Gopishetty V., and Katz E., Specificbiochemical-to-optical signal transduction by responsive thinhydrogel films loaded with noble metal nanoparticles, Adv.Mater., 2010, 22, 1412-1416.[Crossref]
  • [114] Hiller J. and Rubner M.F., Reversible molecular memoryand pH-switchable swelling transitions in polyelectrolytemultilayers, Macromolecules, 2003, 36, 4078-4083.[Crossref]
  • [115] Nolan C.M., Serpe M.J., and Lyon L.A., Thermally modulatedinsulin release from microgel thin films, Biomacromolecules,2004, 5, 1940-1946.[Crossref]
  • [116] Serpe M.J., Yarmey K.A., Nolan C.M., Lyon L.A., Doxorubicinuptake and release from microgel thin films, Bimacromolecules,2005, 6, 408-413.[Crossref]
  • [117] Caldorerea-Moore M.E., Liechty W.B. and Peppas N.A.,Responsive theranostic systems: integration of diagnosticimaging agents and responsive controlled release drug deliverycarriers, Acc. Chem. Res., 2011, 44, 1061-107.[Crossref]
  • [118] Vallet-Regí M., Balas F. and Arcos D., Mesoporous materials fordrug delivery, Angew. Chem. Int. Ed., 2007, 46,7548–7558.[Crossref]
  • [119] Gilham I., Theranostics: an emerging tool in drug discovery andcommercialization, Drug Discovery World 2002.
  • [120] Wang Y.M., Morinaga H., Sudo A., and Endo T., Synthesisof amphiphilic copolymer having acid-labile bicyclo bisoxazolidinein the side chain for controlled release of fragrancealdehyde, J. Polym. Sci. A, 2011, 49, 1881–1886.[Crossref]
  • [121] Kirk J.G., Naik S., Moosbrugger J.C., Morrison D.J., Volkov D.,and Sokolov I., Self-healing epoxy composites based on theuse of nanoporous silica capsules, Int. J. Fracture, 2009, 159,101–102.
  • [122] Privman V., Dementsov A., and Sokolov I., Modeling ofself-healing polymer composites reinforced with nanoporousglass fibers, J. Comput. Theor. Nanosci. 2007, 4, 190–193.
  • [123] Aznar E., Martínez-Máñez R., and Sancenón F. , Controlledrelease using mesoporous materials containing gate-likescaffoldings, Expert Opin. Drug Deliv., 2009, 6, 643–655.
  • [124] Santos H.A., Salonen J., Bimbo L.M., Lehto V.P, Peltonen L., andHirvonen J., Mesoporous materials as controlled drug deliveryformulations, J. Drug Deliv. Sci. Technol., 2011, 21, 139–155.[Crossref]
  • [125] He Q. and Shi J., Mesoporous silica nanoparticle based nanodrug delivery systems: synthesis, controlled drug release anddelivery, pharmacokinetics and biocompatibility, J. Mater.Chem., 2011, 21, 5845–5855.[Crossref]
  • [126] Viseras C., Aguzzi C., Cerezo P., and Bedmar M.C., Biopolymerclaynanocomposites for controlled drug delivery, Mater. Sci.Technol., 2008, 24, 1020–1026.[Crossref]
  • [127] Raemdonck K., Van Thienen T.G., Vandenbroucke R.E., SandersN.N., Demeester J., and De Smedt S.C., Dextran microgels fortime-controlled delivery of siRNA, Adv. Funct. Mater., 2008, 18,993–1001.[Crossref]
  • [128] Chertok B., Webber M.J., Succi M.D. and Langer R., Drugdelivery interfaces in the 21st century: from science fictionideas to viable technologies, Mol. Pharm., 2013, 10, 3531-3543.[Crossref]
  • [129] Kelkar S.S. and Reineke T.M., Theranostics: Combining imagingand therapy, Bioconjugate Chem., 2011, 22, 1879-1903.[Crossref]
  • [130] Kost J., Leong K., and Langer R., Ultrasound-enhanced polymerdegradation and release of incorporated substances, Proc.Natl. Acad. Sci. USA, 1989, 86, 7663-7666.[Crossref]
  • [131] Aschkenasy C. and Kost J., On-demand release by ultrasoundfrom osmotically swollen hydrophobic matrices, J. ControlledRelease, 2005, 110, 58-66.
  • [132] Kost J., Wolfrum J., and Langer R., Magnetically enhancedinsulin release in diabetic rats, J. Biomed. Mater. Res., 1987,21, 1367-1373.[Crossref]
  • [133] Kwon I., Bae Y., and Kim S., Electrically erodible polymer gel forcontrolled release of drugs, Nature, 1991, 354, 291-293.
  • [134] Yui N., Okano T., and Sakurai Y., Photo-responsive degradationof heterogeneous hydrogels comprising crosslinked hyaluronicacid and lipid microspheres for temporal drug delivery, J.Control. Rel., 1993, 26, 141-145.
  • [135] Goldbart R. and Kost J., Calcium responsive bioerodible drugdelivery system, Pharm. Res., 1999, 16, 1483-1486.[Crossref]
  • [136] Goldbart R., Traitel T., Lapidot S.A., and Kost J., Enzymaticallycontrolled responsive drug delivery systems, Polym. Advan.Technol., 2002, 13, 1006.[Crossref]
  • [137] Wang C., Stewart R.J. and Kopecek J., Hybrid hydrogelsassembled from synthetic polymers and coiled-coil proteindomains, Nature, 1999, 397, 417-420.
  • [138] Heller J. and Trescony P., Controlled drug release by polymerdissolution. II: Enzyme-mediated delivery device, J. Pharm.Sci., 1979, 68, 919-921.[Crossref]
  • [139] Yui N., Okano T., and Sakurai Y., Inflammation responsivedegradation of crosslinked hyaluronic acid gels, J. Control. Rel.,1992, 22, 105-116.
  • [140] World Health Organization, Adherence to long-term therapies:Evidence for action, 2003.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_boca-2014-0002
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.