EN
Study aim: To determine the effects of non-habitual wearing of high-heeled shoes on loading coefficient, loading stress and forefoot-rearfoot load imbalance in females Materials and methods: Fifty young adult female subjects were selected using a convenience sampling technique, and studied utilising crossover control research design. They walked barefoot and thereafter, in high-heeled shoes; for a distance of 10- metre measured out in a gait laboratory. They demonstrated their gait twice for each speed, along a 10 metres walkway, at five speeds varying from very slow to very fast. Mean values of steps and time were recorded and used to calculate the values of velocity, stride length, stride frequency, double-support, swing, single-support, and stance phases of stride. These were adopted to form a modified velocity field diagram (MVFD). The data obtained were statistically analysed using a t-test for correlated means, with alpha set at 0.05.Results: The MVFDs revealed that the F/R load ratios were obtained as 0.67 and 1.5, while loading coefficient was 0.4 and 0.6, for barefoot and high-heeled walking, respectively. Loading coefficient and stress in high-heeled walking was 1.50 and 1.88 of the value in barefoot walking, respectively. Conclusions: Non-habitual wearing of high-heeled shoes increased F/R load imbalance, loading coefficient, and stress in the foot. However, there was no evidence of gait pathology in the subjects when they walked barefoot. Thus, non-habitual use of high-heeled shoes by the subjects did not translate to significant residual biomechanical derangements in the locomotor apparatus otherwise the kinematic data recorded for barefoot walking would have approximated the values obtained during high heeled walking.