Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2003 | 1 | 2 | 355-362

Article title

Nematic ordering problem as the polymer problem of the excluded volume

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Based on a solution of the polymer excluded volume problem, a technique is proposed to estimate some parameters at the isotropic-nematic liquid crystal phase transition (the product of the volume fraction of hard sticks and the ratio of the stick length, L, to its diameter, D; the maximum value of this ratio at which one cannot regard the stick as hard). The critical exponents are estimated. The transition of a swelling polymer coil to ideal is revealed as the polymerization degree of a macromolecule increases. The entanglement concentration obtained agrees with experimental data for polymers with flexible chains. The number of monomers between neighbor entanglements is assumed to be the ratio L/D. A comparison of the theory with other ones and recent experimental data is made.

Publisher

Journal

Year

Volume

1

Issue

2

Pages

355-362

Physical description

Dates

published
1 - 6 - 2003
online
1 - 6 - 2003

Contributors

author
  • Karpov Institute of Physical Chemistry, 103064, Moscow, Russia

References

  • [1] M.E. Fisher: “Shape of a Self-Avoiding Walk or Polymer Chain”, J. Chem. Phys., Vol. 44, (1966), pp. 616–622. http://dx.doi.org/10.1063/1.1726734[Crossref]
  • [2] P.-G. de Gennes: “Exponents for the Excluded Volume Problem as Derived by the Wilson Method”, Phys. Lett., Vol. 38A, (1972), pp. 339. [Crossref]
  • [3] K.G. Wilson and J. Kogut: “The renormalization group and the ε-expansion”, Phys. Rep., Vol. 12C, (1974), pp. 75–199. http://dx.doi.org/10.1016/0370-1573(74)90023-4[Crossref]
  • [4] L.D. Landau and E.M. Lifshitz: Statistical Physics, 3rd ed., Pergamon, Oxford, 1980.
  • [5] A.Yu. Grosberg and A.R. Khokhlov: Statistical Physics of Macromolecules. American Institute of Physics Press, New York, 1994.
  • [6] P.-G. de Gennes: Scaling Concepts in Polymer, Physics, Cornell University Press, New York, Ithaca and London, 1979.
  • [7] A.N. Yakunin: “A Globule in a Stretching Field. The Role of Partial Melting During Drawing of Crystalline Polymers”, Intern. J. Polymeric Mater., Vol. 22, (1993), pp. 57–64.
  • [8] S. Caracciolo, M.S. Causo, A. Pelissetto: “High-precision determination of the critical exponent γ for self-avoiding walks”, Phys. Rev. E, Vol. 57, (1998), pp. R1215-R1218. http://dx.doi.org/10.1103/PhysRevE.57.R1215[Crossref]
  • [9] G. Besold, H. Guo, M.J. Zuckermann: “Off-Lattice Monte Carlo Simulation of the Discrete Edwards Model”, J. Polym. Sci.: Part B: Polym. Phys., Vol. 38, (2000), pp. 1053–1068. http://dx.doi.org/10.1002/(SICI)1099-0488(20000415)38:8<1053::AID-POLB6>3.0.CO;2-J[Crossref]
  • [10] J. Zinn-Justin: “Precise determination of critical exponents and equation of state by field theory methods”, Phys. Rep., Vol. 344, (2001), pp. 159–178. http://dx.doi.org/10.1016/S0370-1573(00)00126-5[Crossref]
  • [11] R.P. Wool: “Polymer Entanglements”, Macromolecules, Vol. 26, (1993), pp. 1564–1569. http://dx.doi.org/10.1021/ma00059a012[Crossref]
  • [12] P.-G. de Gennes: The physics of liquid crystals, Clarendon Press, Oxford, 1974.
  • [13] A. Brûlet, V. Fourmaux-Demange, J.P. Cotton: “Temperature Dependence of the Conformation of a Comblike Liquid Crystalline Polymer in a NI Nematic Phase”, Macromolecules, Vol. 34, (2001), pp. 3077–3080. http://dx.doi.org/10.1021/ma0017889[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_BF02476302
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.