EN
Based on a solution of the polymer excluded volume problem, a technique is proposed to estimate some parameters at the isotropic-nematic liquid crystal phase transition (the product of the volume fraction of hard sticks and the ratio of the stick length, L, to its diameter, D; the maximum value of this ratio at which one cannot regard the stick as hard). The critical exponents are estimated. The transition of a swelling polymer coil to ideal is revealed as the polymerization degree of a macromolecule increases. The entanglement concentration obtained agrees with experimental data for polymers with flexible chains. The number of monomers between neighbor entanglements is assumed to be the ratio L/D. A comparison of the theory with other ones and recent experimental data is made.