Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2003 | 1 | 2 | 289-306

Article title

Entanglement in the second quantization formalism

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
We study properties of entangled systems in the (mainly non-relativistic) second quantization formalism. This is then applied to interacting and non-interacting bosons and fermions and the differences between the two are discussed. We present a general formalism to show how entanglement changes with the change of modes of the system. This is illustrated with examples such as the Bose condensation and the Unruh effect. It is then shown that a non-interacting collection of fermions at zero temperature can be entangled in spin, providing that their distances do not exceed the inverse Fermi wavenumber. Beyond this distance all bipartite entanglement vanishes, although classical correlations still persist. We compute the entanglement of formation as well as the mutual information for two spin-correlated electrons as a function of their distance. The analogous, non-interacting collection of bosons displays no entanglement in the internal degrees of freedom. We show how to generalize our analysis of the entanglement in the internal degrees of freedom to an arbitrary number of particles.

Publisher

Journal

Year

Volume

1

Issue

2

Pages

289-306

Physical description

Dates

published
1 - 6 - 2003
online
1 - 6 - 2003

Contributors

author
  • Optics Section, The Blackett Laboratory, Imperial College, SW7 2BZ, London, UK

References

  • [1] V. Vedral: “The role of relative entropy in quantum information theory”, Rev. Mod. Phys., Vol. 74, (2002), pp. 197–234. http://dx.doi.org/10.1103/RevModPhys.74.197[Crossref]
  • [2] P. Zanardi: “Quantum entanglement in fermionic lattices”, Phys. Rev., Vol. A 65, (2002), pp. 042101. see also Y. Shi. “Quantum Entanglement of Identical Particles”, quant-ph/0205069, (2003) for a bosonic systems a similar argument was presented by S.J. van Enk, “Entanglement of photons”, Phys. Rev., vol. A 67, (2003), pp. 022303. http://dx.doi.org/10.1103/PhysRevA.65.042101[Crossref]
  • [3] J. Schliemann, D. Loss, A.H. MacDonald: “Double-Occupancy Errors, Adiabaticity, and Entanglement of Spin-Qubits in Quantum Dots”, Phys. Rev., Vol. B 63, (2001), pp. 085311. J. Schliemann, J.I. Cirac, M. Kus, M. Lewenstein, D. Loss: “Quantum Correlations in Two-Fermion Systems”, Phys. Rev., Vol. A 64, (2001), pp. 022303. K. Eckert, J. Schliemann, D. Bruss, M. Lewenstein: “Quantum Correlations in Systems of Indistinguishable Particles”, Annals of Physics, Vol. 299, (2002), pp. 88–127. http://dx.doi.org/10.1103/PhysRevB.63.085311[Crossref]
  • [4] S. Weinberg: The Quantum Theory of Fields, Cambridge University Press, Cambridge, 1997.
  • [5] D. Han, Y.S. Kim, M.E. Noz: “Illustrative example of Feynman's rest of the universe”, Am. J. Physics, Vol. 67 (1999), pp. 61–66. http://dx.doi.org/10.1119/1.19192[Crossref]
  • [6] N.D. Birrell and P.C.W. Davies: Quantum Fields in Curved Space, Cambridge University Press, Cambridge, 1981.
  • [7] L. Mandel and E. Wolf: Optical Coherence and Quantum Optics, Cambridge University Press, Cambridge, 1995.
  • [8] E.. Lifshitz and L.P. Pitaevskii: Statistical Physics (Part Two), Pergamon Press, Oxford 1980.
  • [9] J.M. Vogels, K. Xu. Raman, J. R. Abo-Shaeer, W. Ketterle: “Experimental observation of the Bogoliubov transformation for a Bose-Einstein condensed gas”, Phys. Rev. Lett., Vol. 88, (2002), pp. 060402. http://dx.doi.org/10.1103/PhysRevLett.88.060402[Crossref]
  • [10] S.A. Fulling: “Nonuniqueness of Canonical Field Quantization in Riemannian Space-Time”, Phys. Rev., Vol. D 7, (1972), pp. 2850–2862.
  • [11] S.W. Hawking: “Black Hole Explosions?”, Nature, Vol. 248, (1974), pp. 30–31. http://dx.doi.org/10.1038/248030a0[Crossref]
  • [12] L. Parker: “Quantized Fields and Particle Creation in Expanding Universes.I”, Phys. Rev., Vol. 183, (1969), pp. 1057–1067. http://dx.doi.org/10.1103/PhysRev.183.1057[Crossref]
  • [13] M. Srednicki: “Entropy and area”, Phys. Rev. Lett., Vol. 71, (1993), pp. 666–669. http://dx.doi.org/10.1103/PhysRevLett.71.666[Crossref]
  • [14] R. Wald: “The Thermodynamics of Black Holes”, Living Reviews of Relativity, (2001), can be found athttp://www.livingreviews.org.
  • [15] M. Horodecki, P. Horodecki, R. Horodecki: “Separability of mixed states: Necessary and sufficient conditions”, Phys. Lett. Vol. A 223, (1996), pp. 1–8. http://dx.doi.org/10.1016/S0375-9601(96)00706-2[Crossref]
  • [16] W.K. Wootters: “Entanglement of formation of an arbitrary state of two qubits”, Phys. Rev. Lett., Vol.80, (1997), pp. 2245–2248. http://dx.doi.org/10.1103/PhysRevLett.80.2245[Crossref]
  • [17] Y. Omar, N. Paunković, S. Bose, V. Vedral: “Spin-space entanglement transfer and quantum statistics”, Phys. Rev. Vol. A, (2002), pp. 062305. J.R. Gittings and A.J. Fisher: “Describing mixed spin-space entanglement of pure states of indistinguishable particles using an occupation-number basis”, Phys. Rev., Vol. A 66, (2002), pp. 032305. [Crossref]
  • [18] C.N. Yang: “Concept of Off-Diagonal Long-Range Order and the Quantum Phases of Liquid He and of Superconductors”, Rev. Mod. Phys., Vol. 34, (1962), pp. 694–704. http://dx.doi.org/10.1103/RevModPhys.34.694[Crossref]
  • [19] T.D. Lee and C.N. Yang: “Many-Body Problem in Quantum Statistical Mechanics. I. General Formulation”, Phys. Rev., Vol. 113, (1959), pp. 1165–1177. http://dx.doi.org/10.1103/PhysRev.113.1165[Crossref]
  • [20] N. Paunković, Y. Omar, S. Bose, V. Vedral: “Entanglement concentration using quantum statistics”, Phys. Rev. Lett. Vol. 88, (2002), pp. 187903. http://dx.doi.org/10.1103/PhysRevLett.88.187903[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_BF02476298
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.