Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2005 | 3 | 1 | 82-94

Article title

Speciation analysis of inorganic form of arsenic in ground water samples by hydride generation atomic absorption spectrometry with insitu trapping in graphite tube

Content

Title variants

Languages of publication

EN

Abstracts

EN
This paper presents the results of a study on the optimization of the determination of total arsenic and its species using the absorption atomic spectrometry method combined with hydride generation and in-situ concentration on the inner walls of the graphite tube. To ensure a maximum efficiency of the in-situ analyte concentration on the graphite tube walls, a palladium modifier subjected to preliminary thermal reduction was used. The limits of detection (3σ) were 0.019 ng/mL for total As and 0.031 ng/mL for As(III) at the preliminary analyte concentration for 60s. The optimised procedure of the analyte concentration on the inner walls of the atomiser (graphite tube) was applied for determinations of arsenic in samples of ground water. The content of arsenic in the samples studied varied from 0.21 ng/mL to 0.80 ng/mL for As(III), and from 0.19 ng/mL to 1.24 ng/mL for As(V).

Publisher

Journal

Year

Volume

3

Issue

1

Pages

82-94

Physical description

Dates

published
1 - 3 - 2005
online
1 - 3 - 2005

Contributors

  • Department of Water and Soil Analysis, Adam Mickiewicz University, Drzymaty Street 24, 60-613, Poznań, Poland
author
  • Department of Hydrogeology and Waters Protection, Adam Mickiewicz University, Maków Polnych 16, 61-686, Poznań, Poland

References

  • [1] S.N. Willie: “First order speciation of As using flow injection hydride generation atomic absorption spectrometry with in-situ trapping of the arsine in a graphite furnace”, Spectrochim. Acta B, Vol. 51, (1996), pp. 1781–1790. http://dx.doi.org/10.1016/S0584-8547(96)01528-5[Crossref]
  • [2] S.J. Hill, T.A. Arowolo, O.T. Butler, S.R.N. Chenery, J.M. Cook, M.S. Cresser and D.L. Miles: “Atomic spectrometry update. Environmental analysis”, J. Anal. At. Spectrom. Vol. 17, (2002), pp. 284–317. http://dx.doi.org/10.1039/b200833p[Crossref]
  • [3] A. Taylor, S. Branch, D. Halls, M. Patriarca and M. White: “Atomic spectrometry update. Clinical and biological materials, foods and beverages”, J. Anal. At. Spectrom. Vol. 17, (2002), pp. 414–455. http://dx.doi.org/10.1039/b201456b[Crossref]
  • [4] H. Matusiewicz and R.E. Sturgeon: “Atomic spectrometric detection of hydride forming elements following in situ trapping within a graphite furnace”, Spectrochimica Acta B, Vol. 51, (1996), pp. 377–397. http://dx.doi.org/10.1016/0584-8547(95)01419-5[Crossref]
  • [5] P. Bermejo-Barrera, J. Moreda-Pineiro, A. Moreda-Pineiro and A. Bermjo-Barrera: “Selective medium reaction for the arsenic(III), arsenic(V) dimethylarsonic acid and monomehylarsonic acid determination in waters by hydride generation on-line electrothermal atomic absorption spectrometry with in situ preconcentration on Zrcoated graphite tubes”, Analytica Chimica Acta, Vol. 374 (1998), pp. 231–240. http://dx.doi.org/10.1016/S0003-2670(98)00515-7[Crossref]
  • [6] J.Y. Cabon and N. Cabon: “Determination of arsenic species in seawater by flow injection hydride generation in situ collection followed by graphite furnace atomic absorption spectrometry Stability of As(III)”, Analytica Chimica Acta, Vol. 418, (2000), pp. 19–31. http://dx.doi.org/10.1016/S0003-2670(00)00948-X[Crossref]
  • [7] H. Matusiewicz and M. Mikołajczak: “Determination of As, Sb, Se, Sn and Hg in beer and wort by direct hydride generation sample introduction electrothermal AAS”, J. Anal. At. Spectrom., Vol. 16, (2001), pp. 652–657. http://dx.doi.org/10.1039/b100312g[Crossref]
  • [8] M. Wałcerz, S. Garboś, E. Bulska and A. Hulanicki: “Continuous flow hydride generation for the preconcentration and determination of arsenic and antimony by GFAAS”, Fresenius J. Anal. Chem., Vol. 350, (1994), pp. 662–666. http://dx.doi.org/10.1007/BF00323660[Crossref]
  • [9] E. Denkhaus, A. Golloch, T.U. Kampen, M. Nierfeld and U. Telgherd: “Elactrolytic hydride generation electrothermal atomic absorption spectrometry-in situ trapping of As on diffrent pre-conditioned end-heated graphite tubes”, Fresenius J. Anal. Chem., Vol. 361, (1998), pp. 733–737. http://dx.doi.org/10.1007/s002160051007[Crossref]
  • [10] L. Liang, S. Lazoff, C. Chan, M. Horvat and J.S. Woods: “Determination of arsenic in ambient water at sub-part-per-trillion levels by hydride generation Pd coated platform collection and GFAAS detection”, Talanta, Vol. 47, (1998), pp. 569–583. http://dx.doi.org/10.1016/S0039-9140(98)00079-4[Crossref]
  • [11] P. Niedzielski, M. Siepak and J. Siepak: “Comparison of modifiers for determination of arsenic, antimony and selenium by absorption atomic spectrometry with atomization in a graphite tube or hydride generation and in-situ preconcentration in a graphite tube”, Microchem. J., Vol. 72, (2002), pp. 137–145. http://dx.doi.org/10.1016/S0026-265X(01)00161-8[Crossref]
  • [12] B.T. Kildahl and W. Lund: “Determination of arsenic and antimony in wine by electrothermal atomic absorption spectrometry”, Fresenius J. Anal. Chem., Vol. 354, (1996), pp. 93–96. http://dx.doi.org/10.1007/s002169600015[Crossref]
  • [13] Z. Ni, Z. Rao and M. Li: “Minimalization of phosphate interference in the direct determination of arsenic in urine by electrothermal atomic absorption spectrometry”, Anal. Chem. Acta, Vol. 334, (1996), pp. 177–182. http://dx.doi.org/10.1016/S0003-2670(96)00293-0[Crossref]
  • [14] H. O. Haug and Y. Liao: “Investigation of the automated determination of As, Sb and Bi by flow-injection hydride generation using in-situ trapping on stable coatings in graphite furnace atomic absorption spectrometry”, Fresenius J. Anal. Chem., Vol. 356, (1996), pp. 435–444.
  • [15] É.C. Lima, R.V. Barbosa, J.L. Brasil, H.D.P. Santos: “Evaluation of different permanent modifiers for the determination of arsenic, cadmium and lead in environmental samples by electrothermal atomic absorption spectrometry”, J. Anal. At. Spectrom., Vol. 17, (2002), pp. 1523–1529. http://dx.doi.org/10.1039/b205905c[Crossref]
  • [16] A.B. Volynsky: “Investigation of the mechanisms of the action of chemical modifiers for electrothermal atomic absorption spectrometry: what for and how?”, Spectrochimica Acta Part B, Vol. 53, (1998), pp. 139–149. http://dx.doi.org/10.1016/S0584-8547(97)00124-9[Crossref]
  • [17] P.R. Walsh, L. Fasching and R.A. Duce: “Matrix Effekts and Their Control during the Flameless Atomic Absorption Determination of Arsenic”, Anal. Chem., Vol. 48, (1976), pp. 1014–1015. http://dx.doi.org/10.1021/ac60371a004[Crossref]
  • [18] Y. Hirano, K. Yasuda and K. Hirokawa, “Lessening unexpected increases of atomic vapor temperature of arsenic in graphite furnace atomic absorption spectrometry”, Anal Scienc., Vol. 10, (1994), pp. 480–484.
  • [19] J.Y. Cabon and N. Cabon: “Determination of arsenic species in seawater by flow injection hydride generation in situ collection followed by graphite furnace atomic absorption spectrometry Stability of As(III)”, Anal. Chim. Acta., Vol. 418, (2000), pp. 19–31. http://dx.doi.org/10.1016/S0003-2670(00)00948-X[Crossref]
  • [20] H.M. Ortner, E. Bulska, U. Rohr, G. Schlemmer, S. Weinbruch and B. Welz: Proceedings of 4 th European Furnace Symposium (1999), Kosice, Slovakia, 2000, pp. 11–20.
  • [21] P. Niedzielski, M. Siepak, J. Siepak and J. Przybyłek: “Determination of different forms of arsenic antimony and selenium in water samples using hydride generation”, Pol. J. Environ. Stud., Vol. 11, (2002), pp. 219–224.
  • [22] J. Dedina and D.L. Tsalev: Hydride Generation Atomic Absorption Spectrometry, Wiley, Chichester, 1995.
  • [23] J. Stummeyer, B. Harazim and T. Wippermann: “Speciation of arsenic in water samples by high-performance liquid chromatography-hydride generation-atomic absorption spectrometry at trace levels using a post-column reaction system”, Fresenius J. Anal. Chem., Vol. 354, (1996), pp. 344–351.
  • [24] G. Henze, W. Wagner and S. Sander: “Speciation of arsenic(V) and arsenic(III) by cathodic stripping voltammetry in fresh water samples”, Fresenius J. Anal. Chem., Vol. 358, (1997), pp. 741–744. http://dx.doi.org/10.1007/s002160050501[Crossref]
  • [25] J. Chwastowska, E. Sterlińska, W. Zmijewska and J. Dudek: “Application of a cheleting resin loaded with thionalide to speciation analisis of As(III,V) in natural waters”, Chem. Anal., Vol. 41, (1996), pp. 45–53.
  • [26] D. Chakraborti, W. De Jonghe and F. Adams: “The determination of arsenic by electrothermal atomic absorption spectrometry with a graphite furnace”, Anal. Chim. Acta., Vol. 120, (1980), pp. 121–127. http://dx.doi.org/10.1016/S0003-2670(01)84354-3[Crossref]
  • [27] S. Saverwyns, X. Zhang, F. Vanhaecke, R. Cornelis, L. Moens and R. Dams: “Speciation of Six Arsenic Compounds Using High-performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry With Sample Introduction by Termospray Nebulization”, J. Anal. At. Spectrom., Vol. 12, (1997), pp. 1047–1052. http://dx.doi.org/10.1039/a701554b[Crossref]
  • [28] P. Niedzielski, J. Siepak and M. Siepak: “Total Content of Arsenic, Antimony and Selenium in Groundwater Samples from Western Poland”, Pol. J. Environ. Stud., Vol. 5, (2001), pp. 347–350.
  • [29] P.L. Smedley and W.M. Edmunds: “Redox Patterns and Trace-Element Behvior in the East Midlands Triassic Sandstone Aquifer”, U.K. Ground Water, Vol. 40, (2002), pp. 44–58. http://dx.doi.org/10.1111/j.1745-6584.2002.tb02490.x[Crossref]
  • [30] G. Tao and E.H. Hansen: “Determination of Ultra-trace Amounts of Selenium(IV) by Flow Injection Hydride Generation Atomic Absorption Spectrometry With Online Preconcentration by Coprecipitation With Lanthanum Hydroxide”, Analyst, Vol. 119, (1994), pp. 333–337. http://dx.doi.org/10.1039/an9941900333[Crossref]
  • [31] L.L. Yang and D.Q. Zhang: “In situ preconcentration and determination of trace arsenic in botanical samples by hydride generation-graphite furnace atomic absorption spectrometry with Pd−Zr as chemical modifier”, Anal. Chim. Acta, Vol. 491, (2003), pp. 91–97. http://dx.doi.org/10.1016/S0003-2670(03)00798-0[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_BF02476240
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.