Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2004 | 2 | 3 | 524-533

Article title

The role of quantum interference in determining transport properties of molecular bridges

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
An analytical approach to the electron transport phenomena in molecular devices is presented. The analyzed devices are composed of various molecular bridges attached to two semi-infinite electrodes. Molecular system is described within the tight-binding model, while the coupling to the electrodes is analyzed through the use of Newns-Anderson chemisorption theory. The current-voltage (I-V) characteristics are calculated through the integration of transmission function in the standard Landauer formulation. The essential question of quantum interference effect of electron waves is diseussed in three aspects: (i) the geometry of a molecular bridge, (ii) the presence of an external magnetic field and (iii) the location of chemical substituent.

Publisher

Journal

Year

Volume

2

Issue

3

Pages

524-533

Physical description

Dates

published
1 - 9 - 2004
online
1 - 9 - 2004

Contributors

author
  • Insitute of Physics, Adam Mickiewicz University, Umultowska 85, 61-614, Poznań, Poland

References

  • [1] A. Yazdani, D.M. Eigler and N.D. Lang: “Off-resonance conduction through atomic wires”, Science, Vol. 272, (1996), pp. 1921–1924.
  • [2] M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin and J.M. Tour: “Conductance of a Molecular Junction”, Science, Vol. 278, (1997), pp. 252–254. http://dx.doi.org/10.1126/science.278.5336.252[Crossref]
  • [3] R.H.M. Smit, Y. Noat, C. Untiedt, N.D. Lang, N.C. van Hemert and J.M. van Ruitenbeek: “Measurement of the conductance of a hydrogen molecule”, Nature, Vol. 419, (2002), pp. 906–909. http://dx.doi.org/10.1038/nature01103[Crossref]
  • [4] L.A. Bumm, J.J. Arnold, M.T. Cygan, T.D. Dunbar, T.P. Burgin, L. Jones II, D.L. Allara, J.M. Tour and P.S. Weiss: “Are Single Molecular Wires Conducting?”, Science, Vol. 271, (1996), pp. 1705–1707.
  • [5] R.P. Andres, J.O. Bielefeld, J.I. Henderson, D.B. Janes, V.R. Kolagunta, C.P. Kubiak, W.J. Mahoney and R.G. Osifchin: “Self-Assembly of a Two- Dimensional Superlattice of Molecularly Linked Metal Clusters”, Science, Vol. 273, (1997), pp. 1690–1693.
  • [6] J. Chen, M.A. Reed, A.M. Rawlett and J. M. Tour: “Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device”, Science, Vol. 286, (1999), pp. 1550–1552. http://dx.doi.org/10.1126/science.286.5444.1550[Crossref]
  • [7] T. Kostyrko: “An analytic approach to the conductance and I-V characteristics of polymeric chains”, J. Phys.: Condens. Matter, Vol. 14, (2002), pp. 4393–4405. http://dx.doi.org/10.1088/0953-8984/14/17/312[Crossref]
  • [8] M.A. Reed: “Molecular-Scale Electronics”, Proc. IEEE, Vol. 87, (1999), pp. 652–658. http://dx.doi.org/10.1109/5.752520[Crossref]
  • [9] V. Mujica, A.E. Roitberg and M.A. Ratner: “Molecular wire conductance: Electrostatic potential spatial profile”, J. Chem. Phys., Vol. 112, (2000) pp. 6834–6839. http://dx.doi.org/10.1063/1.481258[Crossref]
  • [10] W. Tian, S. Datta, S. Hong, R. Reifenberger, J.I. Henderson and C.P. Kubiak: “Conductance spectra of molecular wires”, J. Chem. Phys., Vol., 109, (1998), pp. 2874–2882. http://dx.doi.org/10.1063/1.476841[Crossref]
  • [11] V. Mujica, M. Kemp and M.A. Ratner: “Electron conduction in molecular wires. I. A scattering formalism”, J. Chem. Phys., Vol. 101, (1994), pp. 6849–6855. http://dx.doi.org/10.1063/1.468314[Crossref]
  • [12] V. Mujica, M. Kemp and M.A. Ratner: “Electron conduction in molecular wires. II. Application to scanning microscopy”, J. Chem. Phys., Vol. 101, (1994), pp. 6856–6864. http://dx.doi.org/10.1063/1.468315[Crossref]
  • [13] V. Mujica, M. Kemp, A.E. Roitberg and M.A. Ratner: “Current-voltage characteristics of molecular wires: Eigenvalue staircase, Coulomb blockade, and rectification”, /emph J. Chem. Phys., Vol. 104, (1996), pp. 7296–7305. http://dx.doi.org/10.1063/1.471396[Crossref]
  • [14] S.N. Yaliraki, A.E. Roitberg, C. Gonzalez, V. Mujica and M.A. Ratner: “The injecting energy at molecule/metal interfaces: implications for conductance of molecular junctions from an ab inition molecular description”, J. Chem. Phys., Vol. 111, (1999), pp. 6997–7002. http://dx.doi.org/10.1063/1.480096[Crossref]
  • [15] A. Sadlej: Elementary Methods of Quantum Chemistry, PWN, Warszawa 1966 (in Polish).
  • [16] J.M. Lopez-Castillo, A. Filali-Mouhim and J.P. Jay-Guerin: “Superexchange coupling and non-nearest-neighbor interactions in electron transfers”, J. Phys. Chem., Vol. 97, (1993), pp. 9266–9269. http://dx.doi.org/10.1021/j100139a002[Crossref]
  • [17] A. Cheong, A.E. Roitberg, V. Mujica and M.A. Ratner: “Resonances and interference effects on the effective electronic coupling in electron transfer”, J. Photochem. Photobiol. A: Chemistry, Vol. 82, (1994), pp. 81–86. http://dx.doi.org/10.1016/1010-6030(94)02020-5[Crossref]
  • [18] E.G. Emberly and G. Kirczenow: “Antiresonances in molecular wires”, J. Phys.: Condens. Matter, Vol. 11, (1999), pp. 6911–6926. http://dx.doi.org/10.1088/0953-8984/11/36/308[Crossref]
  • [19] L.D. Landau and E.M. Lifszitz: Quantum Mechanics, PWN, Warszawa 1975 (in Polish).
  • [20] J.P. Carini, K.A. Multtalib and S.R. Nagel: “Origin of Aharonov-Bohm Effect with Half Flux Quanta”, Phys. Rev. Lett., Vol. 53, (1984), pp. 102–105. http://dx.doi.org/10.1103/PhysRevLett.53.102[Crossref]
  • [21] M.A. Davidovich and E.V. Anda: “Current fluctuation in the Bohm-Aharonov effect”, Phys. Rev. B, Vol. 50, (1994), pp. 15453–15456. http://dx.doi.org/10.1103/PhysRevB.50.15453[Crossref]
  • [22] M.A. Davidovich, E.V. Anda, J.R. Iglesias and G. Chiappe: “Bohm-Aharonov and Kondo effects on tunneling currents in mesoscopic rings”, Phys. Rev. B., Vol. 55, (1997), pp. R7335-R7338. http://dx.doi.org/10.1103/PhysRevB.55.R7335[Crossref]
  • [23] K. Haule and J. Bonča: “Inelastic tunneling through mesoscopic structures”, Phys. Rev. B, Vol. 59, (1999), pp. 13087–13093. http://dx.doi.org/10.1103/PhysRevB.59.13087[Crossref]
  • [24] A.Y. Smirnov, N.J.M. Horing and L.G. Mourokh: “Aharonov-Bohm phase effects and inelastic scattering in transport through a parallel tunnel coupled symmetric double-dot device”, Appl. Phys. Lett., Vol. 77, (2000), pp. 2578–2580. http://dx.doi.org/10.1063/1.1317542[Crossref]
  • [25] B. Pannetier, J. Chausay, R. Rarnmal and P. Gandit: “Magnetic Flux Quantization in the Weak-Localization Regime of a Nonsuperconducting Metal”, Phys. Rev. Lett., Vol. 53, (1984), pp. 718–721. http://dx.doi.org/10.1103/PhysRevLett.53.718[Crossref]
  • [26] C.O. Umbach, C. van Hasendock, R.B. Laibowitz, R.B. Washburn and R.A. Webb: “Observation of h/e Aharonov-Bohm Oscillations in Normal-Metal Rings”, Phys. Rev. Lett., Vol. 54, (1985), pp. 2696–2699. http://dx.doi.org/10.1103/PhysRevLett.54.2696[Crossref]
  • [27] N.D. Lang and Ph. Avouris: “Carbon-Atom Wires: Charge-Transfer Doping, Voltage Drop, and the Effect of Distortion”, Phys. Rev. Lett., Vol. 84, (2000), pp. 358–361. http://dx.doi.org/10.1103/PhysRevLett.84.358[Crossref]
  • [28] M. Di Ventra, S.T. Pantelides and N.D. Lang: “Current-Induced Forces in Molecular Wires”, Phys. Rev. Lett., Vol. 88, (2002), pp. 046801. http://dx.doi.org/10.1103/PhysRevLett.88.046801[Crossref]
  • [29] K. Walczak: “Inelastic transport through molecular wires”, (2003), pp. 1–10, http//arxiv.org/abs/cond-mat/0306174.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_BF02476205
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.