Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2004 | 2 | 2 | 277-299

Article title

Propagation of Ultra-High Energy Cosmic Rays in Extragalactic Magnetic Fields

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this paper we will discuss the problem of Ultra High Energy Cosmic Rays (UHECR) and show that the idea of a Single Source Model established by Erlykin and Wolfendale (1997) to explain the features seen in cosmic ray energy spectra around the 1015 eV region can be successfully applied also for the much higher energies. The propagation of UHECR (of energies higher than 1019 eV) in extragalactic magnetic fields can no longer be described as a random walk (diffusion) process and the transition to rectilinear propagation gives a possible explanation for the so-called Greisen-Zatzepin-Kuzmin (GZK) cut-off which still remains an open question after almost 40 years. A transient “single source” located at a particular distance and producing UHECR for a finite time is the proposed solution.

Publisher

Journal

Year

Volume

2

Issue

2

Pages

277-299

Physical description

Dates

published
1 - 6 - 2004
online
1 - 6 - 2004

References

  • [1] A.D. Erlykin and A.W. Wolfendale: “A single source of casmic rays in the range 1015 to 1016eV”, Journal of Physics, G, Vol. 23, (1997), pp. 979–989. http://dx.doi.org/10.1088/0954-3899/23/8/012[Crossref]
  • [2] A.D. Erlykin and A.W. Wolfendale: “Structure in the cosmic ray spectrum: an update”, Journal of Physics G, Vol. 27, (2001), pp. 1005–1030. http://dx.doi.org/10.1088/0954-3899/27/5/305[Crossref]
  • [3] A.D. Erlykin and A.W. Wolfendale: “A search for ‘structure’ in the energy spectra of cosmic ray protons and He-nuclei above 104 GeV”, Astroparticle Physics, Vol. 10, (1999), pp. 69–81; “Supernova remnants and the origin of the cosmic radiation: I. SNR acceleration models and their predictions”, Journal of Physics G, Vol. 27, (2001) pp. 941–958; “Supernova remnants and the origin of the cosmic radiation: II. Spectral variations in space and time”, Journal of Physics G, Vol. 27, (2001), pp. 959–976; “Supernova remnants and the origin of the cosmic radiation: III. Spectral differences for different nuclei”, Journal of Physics G, Vol. 27, (2001), pp. 1709–1721. http://dx.doi.org/10.1016/S0927-6505(98)00040-1
  • [4] T. Wibig and A.W. Wolfendale: “The anisotropy of arrival directions of cosmic rays above 1017 eV”, Journal of Physics G, Vol. 25, (1999), pp. 2001–2009. http://dx.doi.org/10.1088/0954-3899/25/9/317[Crossref]
  • [5] J. Szabelski, T. Wibig and A.W. Wolfendale: “Cosmic rays of the highest energies: the case for extragalactic heavy nuclei”, Astroparticle Physics, Vol. 17, (2002), pp. 125–131. http://dx.doi.org/10.1016/S0927-6505(01)00142-6[Crossref]
  • [6] S.S. Al-Dargazelli, A.W. Wolfendale, A. Śmiałkowski and J. Wdowczyk “The origin of cosmic rays of the highest energies”, Journal of Physics G, Vol. 22, (1996), pp. 1825–1838. http://dx.doi.org/10.1088/0954-3899/22/12/013[Crossref]
  • [7] V. Berezinsky: “Ultra high energy cosmic rays”, Nuclear Physics Proc.Suppl., Vol. 70, (1999), pp. 419–430; “Ultra High Energy Cosmic Rays”, Nuclear Physics Proc.Suppl., Vol. 81, (2000), pp. 311–322; “Ultra high energy cosmic rays from cosmological relics”, Nuclear Physics Proc.Suppl., Vol. 87, (2000), pp. 387–396. http://dx.doi.org/10.1016/S0920-5632(98)00463-0[Crossref]
  • [8] T. Wibig and A.W. Wolfendale: “The mass composition of cosmic rays above 1017 eV”, Journal of Physics G, Vol. 25, (1999), pp. 1099–1112. http://dx.doi.org/10.1088/0954-3899/25/5/313[Crossref]
  • [9] K. Greisen: “End to the cosmic ray spectrum?”, Physical Review Letters, Vol. 16, (1966), pp. 748–750. http://dx.doi.org/10.1103/PhysRevLett.16.748[Crossref]
  • [10] G.T. Zatzepin and V.A. Kuzmin: “Upper limit of the spectrum of cosmic rays”, Journal of Experimental and Theoretical Physics Letters, Vol. 4, (1966), pp. 78–80.
  • [11] M. Takeda et al.: “Extension of the cosmic ray energy spectrum beyond the predicted Greisen-Zatsepin-Kuz’min cutoff”, Physical Review Letters, Vol. 81, (1998), pp. 1163–1166. http://dx.doi.org/10.1103/PhysRevLett.81.1163[Crossref]
  • [12] C. Isola and G. Sigl: “Large scale magnetic fields and the number of cosmic ray sources above 1019 eV”, Physical Review D, Vol. 66, (2002), p. 083002. http://dx.doi.org/10.1103/PhysRevD.66.083002[Crossref]
  • [13] G. Bertone, C. Isola, M. Lemoine and G. Sigl: “Ultrahigh-energy heavy nuclei propagation in extragalactic magnetic fields”, Physical Review D, Vol. 66, (2002), p. 103003. http://dx.doi.org/10.1103/PhysRevD.66.103003[Crossref]
  • [14] P.P. Kronberg: “Extragalactic magnetic fields”, Reports on Progress in Physics, Vol. 57, (1994), pp. 325–382. http://dx.doi.org/10.1088/0034-4885/57/4/001[Crossref]
  • [15] D. Harari, S. Mollerach, E. Roulet and F. Sanchez: “Lensing of Ultrahigh-energy cosmic rays in turbulent magnetic fields”, Journal of High Energy Physics, (2002), 0203:045, http://usparc.ihep.su/spires/find/hep/www?rawcmd=ea+Harari,+Diego; M. Bossa, S. Mollerach and E. Roulet: “Decaying neutron propagation in the Galaxy and the cosmic ray anisotropy at 1 EeV”, Journal of Physics, G, Vol. 29, (2003), pp. 1409–1422.
  • [16] T. Wibig and A.W. Wolfendale: “Ultra-high energy cosmic rays from transient extragalactic sources”, Journal of Physics G, Vol. 30, (2004), pp. 525–542. http://dx.doi.org/10.1088/0954-3899/30/4/012[Crossref]
  • [17] M.A. Malkan and F.W. Stecker: “An empirically based calculation of the extragalactic infrared background”, Astrophysical Journal, Vol. 496, (1998), pp. 13–16. http://dx.doi.org/10.1086/305384[Crossref]
  • [18] M. Takeda et al.: “Small-scale anisotropy of cosmic rays above 1019 eV observed with the Akeno Giant Air Shower Array”, Astrophysical Journal, Vol. 522, (1999), pp. 225–237. http://dx.doi.org/10.1086/307646[Crossref]
  • [19] F.W. Stecker and M.M. Salamon: “Photodisintegration of ultrahigh-energy cosmic rays: a new determination”, Astrophysical Journal, Vol. 512, (1999), pp. 521–526. http://dx.doi.org/10.1086/306816[Crossref]
  • [20] P. Lipa: “On the measurement of correlations and intermittency”, In: R. C. Hwa (Ed.): Fluctuations and Fractal Structure, Proc. of Ringberg Workshop, World Scientific, Singapore, (1992), pp. 96–110; P. Lipa, P. Currythers, H.C. Eggers and B. Buschbeck: “The correlation integral as probe of multiparticle correlations”, Physics Letters B, Vol. 285, (1992), pp. 300–308; “Integral correlation measures for multiparticle physics”, Physical Review D, Vol. 48, (1993), pp. 2040–2053; H.C. Eggers and P. Lipa: “Star integral and unbiased estimators”, Regensburg preprint TPR-93-25, http://arxiv.org/hep-ph/9309256.
  • [21] M. Teshima et al.: “The Arrival Direction Distribution of Extremely High Energy Cosmic Rays Observed by AGASA”, Proceedings of the 28th International Cosmic Ray Conference, Tsukuba, (2003), pp. 437–440; J. Belz et al. for the HiRes Collaboration: “Anisotropy Studies of Ultra-High Energy Cosmic Rays Using Monocular Data Collected by the High-Resolution Fly’s Eye (HiRes)”, ibid., (2003), pp. 425–428; C.B. Finley and S. Westerhoff for the HiRes Collaboration: “Small-Scale Anisotropy Studies of the Highest Energy Cosmic Rays Observed in Stereo by HiRes”, ibid., (2003), pp. 433–436.
  • [22] M. Takeda et al.: “Energy Determination in the Akeno Giant Air Shower Array Experiment”, Proceedings of the 28th International Cosmic Ray Conference, Tsukuba, (2003), pp. 381–384; D.R. Bergman for the High Resolution Fly’s Eye Collaboration: “Measurement of the Flux of UHE Cosmic Rays by the HiRes Detectors Observing in Monocular Mode”, ibid., (2003) pp. 397–400; R.W. Springer for the High Resolution Fly’s Eye Collaboration: “Measurement of the Flux of UHE Cosmic Rays by the HiRes Detectors Observing in Both Monocular and Stereoscopic Modes”: ibid., (2003), pp. 413–416; D. De Marco, P. Blasi and A.V. Olinto: “The GZK Feature in the Spectrum of UHECRs: What Is It Telling Us?”, ibid., (2003), pp. 655–658.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_BF02475633
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.