Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2005 | 3 | 2 | 247-257

Article title

On the size dependence of surface tension in the temperature range from melting point to critical point

Content

Title variants

Languages of publication

EN

Abstracts

EN
The problem of size dependence of surface tension was investigated in view of a more general problem of the applicability of Gibbs’ thermodynamics to nanosized objects. For the first time, the effective surface tension (coinciding with the specific excess free energy for an equimolecular dividing surface) was calculated within a wide temperature range, from the melting temperature to the critical point, using the thermodynamic perturbation theory. Calculations were carried out for Lennard-Jones and metallic nanosized droplets. It was found that the effective surface tension decreases both, with temperature and particle size.

Publisher

Journal

Year

Volume

3

Issue

2

Pages

247-257

Physical description

Dates

published
1 - 6 - 2005
online
1 - 6 - 2005

Contributors

  • Theoretical Physics Department, Tver State University, Sadovii per. 35, 17002, Tver, Russia
  • Theoretical Physics Department, Tver State University, Sadovii per. 35, 17002, Tver, Russia

References

  • [1] J.W. Gibbs:The Collected Works, Vol. 1, Longmans Green and Co, New York London, Toronto, 1928.
  • [2] R.C. Tolman: “The effect of droplet size on surface tension”, Journ. Chem. Phys., Vol. 17, (1949), pp. 333–340. http://dx.doi.org/10.1063/1.1747247[Crossref]
  • [3] T.L. Hill:Thermodynamics of Small Systems, W.A. Benjamin, Inc., Publishers, New York, Amsterdam, 1963.
  • [4] A.I. Rusanov:Phasengleichgewichte und Grenzflaechenerscheinungen, Chapter 8, Academe-Verlag, Berlin, 1978.
  • [5] L.M. Shcherbakov:Research in Surface Forces, Vol. 2, Consultants Bureau, N.Y., 1966, pp. 26–32.
  • [6] V.M. Samsonov, N.Yu. Sdobnyakov and A.N. Bazulev: “On thermodynamic stability conditions for nanosized particles”, Surface Science, Vol. 532–535, (2003), pp. 526–530. http://dx.doi.org/10.1016/S0039-6028(03)00090-6[Crossref]
  • [7] V.M. Samsonov and N.Yu. Sdobnyakov: “On thermodynamic stability conditions for nanosized particles”, Central European Journal of Physics, Vol. 2, (2003), pp. 344–354. http://dx.doi.org/10.2478/BF02476301[Crossref]
  • [8] J. Schmelzer: “The Curvature Dependence of Surface Tension of Small Droplets”Journal of Chemistry Society Faraday Transitions, Vol. 82, (1986), pp. 1421–1428. http://dx.doi.org/10.1039/f19868201421[Crossref]
  • [9] V.M. Samsonov, L.M. Scherbakov, A.R. Novoselov and A.R. Lebedev: “Investigation of the microdrop surface tension and the linear tension of the wetting perimeter on the basis of similarity concepts and thermodynamic perturbation theory”, Colloids and Surfaces, Vol. 160(2), (1999), pp. 117–121. http://dx.doi.org/10.1016/S0927-7757(99)00350-7[Crossref]
  • [10] V.M. Samsonov: “Conditions for applicability of a thermodynamic description of highly disperse and microheterogeneous systems”, Russian Journal of Physical Chemistry, Vol. 76, (2002), pp. 1863–1867.
  • [11] V.M. Samsonov, A.N. Bazulev and N.Yu. Sdobnyakov: “Thermodynamic perturbation theory calculations of interpose tension in small objects”, Russian Journal of Physical Chemistry, Vol. 76, (2002), pp. 1872–1876.
  • [12] V.M. Samsonov, A.N. Bazulev and N.Yu. Sdobnyakov: “Surface tension in small droplets and nanocrystals”, Journal of Physical Chemistry, Vol. 77, (2003), pp. S158–S162.
  • [13] V.M. Samsonov, A.N. Bazulev and N.Yu. Sdobnyakov: “On applicability of Gibbs thermodynamics to nanoparticles”, Central European Journal of Physics, Vol. 3, (2003), pp. 474–484. http://dx.doi.org/10.2478/BF02475858[Crossref]
  • [14] V.M. Samsonov, N.Yu. Sdobnyakov and A.N. Bazulev: “Size dependence of the surface tension and the problem Gibbs thermodynamics extension to nanosystems”, Colloids and surfaces A: Physicochemical Engineering Aspects, Vol. 239, (2004), pp. 113–117. http://dx.doi.org/10.1016/j.colsurfa.2004.01.016[Crossref]
  • [15] R.P. Feynman:Statistical Mechanics, chapter 2, W.A. Benjamin, Inc., Massachusetts, 1972
  • [16] C.A. Croxton:Liquid state Physics, chapter 2, Cambridge University Press, Cambridge, 1974.
  • [17] Physical quantities. Handbook, Energoatomizdat, Moscow, 1991, pp. 331–332.
  • [18] D. Schiff: “Computer experiments on liquid metals”, Physical Review, Vol. 186, (1969), pp. 151–159. http://dx.doi.org/10.1103/PhysRev.186.151[Crossref]
  • [19] T.L. Hill:Statistical Mechanics, chapter 6, McGraw-Hill Book Company, Inc., New York-Totonto-London, 1956.
  • [20] E. Matteoli and G. Mansoori: “A simple expression for radial functions of pure fluids and mixtures”, Journal of Chemical Physics, Vol. 103(11), (1995), pp. 4672–4677. http://dx.doi.org/10.1063/1.470654[Crossref]
  • [21] N.H. March and M.P. Tosi:Atomic dynamics in liquids, chapter 9, Macmillan Press, London, 1976.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_BF02475591
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.