Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2005 | 3 | 2 | 186-189

Article title

Theoretical calculations of the temperature dependence of the electrical and thermal conductivities of liquid gallium

Content

Title variants

Languages of publication

EN

Abstracts

EN
The electrical and thermal resistivities of liquid gallium are calculated over a range of temperatures above the melting point using the solutions of the Boltzmann equation. The experimental x-ray structure factor of Waseda and the form factor derived using the Heine-Abarenkov model potential are used in these calculations. The ratio of the electrical and thermal conductivities is calculated and compared to experimental values and to the theoretical Lorenz number.

Publisher

Journal

Year

Volume

3

Issue

2

Pages

186-189

Physical description

Dates

published
1 - 6 - 2005
online
1 - 6 - 2005

Contributors

author
  • Department of Physics, Damascus University, Damascus, Syria
  • Department of Physics, University of Missouri-Kansas City, 64110, Kansas City, MO, USA

References

  • [1] G. Baym: “Direct calculations of Electronic Properties of Metals from Neutron Scattering Data”, Phys. Rev., Vol. 135, (1964), pp. 1691–1692. http://dx.doi.org/10.1103/PhysRev.135.A1691[Crossref]
  • [2] J.M. Ziman: “A Theory of Electrical Properties of Liquid Metals. The Monovalent Metals”, Phil. Mag., Vol. 6, (1961), pp. 1013–1034. [Crossref]
  • [3] Y. Waseda:The Structure of Noncrystalline Materials, McGraw-Hill, New York, 1980.
  • [4] I.V. Abarenkov and V. Heine: “The model potential for positive ions”, Phil. Mag., Vol. 12, (1965), pp. 529–537. [Crossref]
  • [5] D.J.W. Geldart and R. Taylor: “Wave number dependency of the static screening function of the interacting electron gas I”, Can. J. Phys., Vol. 48, (1970), pp. 155–166. [Crossref]
  • [6] L. Degan, M. Rasolt and R. Taylor: “Charge densities and interionic potentials in simple metals: Nonlinear effects. II”, Phys. Rev. B, Vol. 11, (1975), pp. 2726–2734. http://dx.doi.org/10.1103/PhysRevB.11.2726[Crossref]
  • [7] W.A. Harrison:Pseudopotentials in the Theory of Metals, Benjamin, New York, 1966.
  • [8] T. Iida and R. Guthrie:The Physical Properties Of Liquid Metals, Oxford, New York, 1993.
  • [9] G. Ginter, J.G. Gasser and R. Kliem: “The electrical resistivity of liquid bismuth, gallium and bismuth-gallium alloys”, Phil. Mag. B, Vol. 54, (1986), pp. 543–552. [Crossref]
  • [10] M.J. Rice: “Inelastic Electron Scattering and the Lorenz Ratio of Liquid Metals”, Phys. Rev. B, Vol. 2, (1970), pp. 4800–4804. http://dx.doi.org/10.1103/PhysRevB.2.4800[Crossref]
  • [11] M. Sayem El-Daher and R.D. Murphy: “Temperature Dependence of Liquid Transport Properties of Liquid Sodium and Potassium”, J. of Phys. Chem. Liq, Vol. 40, (2001), pp. 469–475. http://dx.doi.org/10.1080/00319100290010383[Crossref]
  • [12] L. Lundmark: “The Electron-Electron Scattering Contribution to the Pressure Dependence of the Thermal Resistivity in Li, Na and K”, J. Phys. F: Metal Phys., Vol. 18, (1988), pp. 1855–1865. http://dx.doi.org/10.1088/0305-4608/18/8/021[Crossref]
  • [13] H. Smith and H.H. Jensen:Transport Phenomena, Oxford, New York, 1989.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_BF02475586
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.