Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 2 | 1 |

Article title

Nucleic Acid Computing and its Potential
to Transform Silicon-Based Technology

Content

Title variants

Languages of publication

EN

Abstracts

EN
Molecular computers have existed on our planet
for more than 3.5 billion years. Molecular computing
devices, composed of biological substances such as nucleic
acids, are responsible for the logical processing of a variety
of inputs, creating viable outputs that are key components
of the cellular machinery of all living organisms. We have
begun to adopt some of the structural and functional
knowledge of the cellular apparatus in order to fabricate
nucleic-acid-based molecular computers in vitro and in
vivo. Nucleic acid computing is directly dependent on
advances in DNA and RNA nanotechnology. The field
is still emerging and a number of challenges persist.
Perhaps the most salient among these is how to translate
a variety of nucleic-acid-based logic gates, developed
by numerous research laboratories, into the realm of
silicon-based computing. This mini-review provides some
basic information on the advances in nucleic-acid-based
computing and its potential to serve as an alternative that
can revolutionize silicon-based technology.

Publisher

Year

Volume

2

Issue

1

Physical description

Dates

accepted
11 - 9 - 2015
online
17 - 12 - 2015
received
21 - 7 - 2015

Contributors

References

  • [1] Acker H. Mechanisms and meaning of cellular oxygen sensingin the organism. Respir Physiol. 1994;95:1-10.[Crossref]
  • [2] Daly K, Darby AC, Hall N, Wilkinson MC, Pongchaikul P, Bravo D,et al. Bacterial sensing underlies artificial sweetener-inducedgrowth of gut Lactobacillus. Environ Microbiol. 2015.
  • [3] Green J, Paget MS. Bacterial redox sensors. Nat Rev Microbiol.2004;2:954-66.[Crossref]
  • [4] Vogel V, Sheetz M. Local force and geometry sensing regulatecell functions. Nat Rev Mol Cell Biol. 2006;7:265-75.[Crossref]
  • [5] Yoney A, Salman H. Precision and variability in bacterialtemperature sensing. Biophys J. 2015;108:2427-36.[Crossref]
  • [6] Feynman RP. The Feynman Lectures on Physics. Massachusetts,USA: Addison-Wesley. 1963;1.
  • [7] Smoluchowski Mv. Experimentell nachweisbare, der UblichenThermodynamik Widersprechende Molekularphenomene. PhysZeitshur. 1912:1069.
  • [8] Finkelstein ASSaAV. „The Ribosome as a Brownian RatchetMachine“ chapter 9. in Molecular Machines in Biology editedby Joachim Frank. 2011:158-90.
  • [9] Seeman NC. DNA nanotechnology: novel DNA constructions.Annu Rev Biophys Biomol Struct. 1998;27:225-48.[Crossref]
  • [10] Seeman NC. DNA engineering and its application tonanotechnology. Trends Biotechnol. 1999;17:437-43.[Crossref]
  • [11] Sun L, Yu L, Shen W. DNA nanotechnology and itsapplications in biomedical research. J Biomed Nanotechnol.2014;10:2350-70.[Crossref]
  • [12] Turberfield AJ. DNA nanotechnology: geometricalself-assembly. Nat Chem. 2011;3:580-1.[Crossref]
  • [13] Zakeri B, Lu TK. DNA nanotechnology: new adventures for anold warhorse. Curr Opin Chem Biol. 2015;28:9-14.[Crossref]
  • [14] Guo P. The emerging field of RNA nanotechnology. NatNanotechnol. 2010;5:833-42.[Crossref]
  • [15] Guo P. RNA Nanotechnology: methods for synthesis,conjugation, assembly and application of RNA nanoparticles.Methods. 2011;54:201-3.
  • [16] Qiu M, Khisamutdinov E, Zhao Z, Pan C, Choi JW, LeontisNB, et al. RNA nanotechnology for computer design andin vivo computation. Philos Trans A Math Phys Eng Sci.2013;371:20120310.
  • [17] Grabow WW, Jaeger L. RNA self-assembly and RNAnanotechnology. Acc Chem Res. 2014;47:1871-80.[Crossref]
  • [18] Westhof E, Masquida B, Jaeger L. RNA tectonics: towards RNAdesign. Fold Des. 1996;1:R78-88.[Crossref]
  • [19] Bai X, Edwards J, Ju J. Molecular engineering approachesfor DNA sequencing and analysis. Expert Rev Mol Diagn.2005;5:797-808.[Crossref]
  • [20] Wang K, Tang Z, Yang CJ, Kim Y, Fang X, Li W, et al. Molecularengineering of DNA: molecular beacons. Angew Chem Int EdEngl. 2009;48:856-70.[Crossref]
  • [21] Wu Y, Kim Y, Tan W. Molecular engineering of DNA bases:building block for functional molecular probes in biomedicine.Nucleic Acids Symp Ser (Oxf). 2008:65-6.
  • [22] Afonin KA, Kasprzak WK, Bindewald E, Kireeva M, Viard M,Kashlev M, et al. In silico design and enzymatic synthesis offunctional RNA nanoparticles. Acc Chem Res. 2014;47:1731-41.[Crossref]
  • [23] Khisamutdinov EF, Li H, Jasinski DL, Chen J, Fu J, Guo P.Enhancing immunomodulation on innate immunity byshape transition among RNA triangle, square and pentagonnanovehicles. Nucleic Acids Res. 2014;42:9996-10004.[Crossref]
  • [24] Endo M, Sugiyama H. DNA nanotechnology: Measuring chloridein live cells. Nat Nanotechnol. 2015;10:569-70.[Crossref]
  • [25] Livstone MS, van Noort D, Landweber LF. Molecular computingrevisited: a Moore‘s Law? Trends Biotechnol. 2003;21:98-101.[Crossref]
  • [26] Keyes RW. Physical limits of silicon transistors and circuits.Reports on Progress in Physics. 2005;68:2701-46.
  • [27] Moe-Behrens GH. The biological microprocessor, or howto build a computer with biological parts. Comput StructBiotechnol J. 2013;7:e201304003.
  • [28] Miyamoto T, Razavi S, DeRose R, Inoue T. Synthesizingbiomolecule-based Boolean logic gates. ACS Synth Biol.2013;2:72-82.[Crossref]
  • [29] Adleman LM. Molecular computation of solutions tocombinatorial problems. Science. 1994;266:1021-4.[Crossref]
  • [30] Cornett EM, Campbell EA, Gulenay G, Peterson E, Bhaskar N,Kolpashchikov DM. Molecular logic gates for DNA analysis:detection of rifampin resistance in M. tuberculosis DNA. AngewChem Int Ed Engl. 2012;51:9075-7.[Crossref]
  • [31] Ogawa A, Susaki Y. Multiple-input and visible-output logicgates using signal-converting DNA machines and goldnanoparticle aggregation. Org Biomol Chem. 2013;11:3272-6.[Crossref]
  • [32] Okamoto A, Tanaka K, Saito I. DNA logic gates. J Am Chem Soc.2004;126:9458-63.[Crossref]
  • [33] Penchovsky R. Engineering integrated digital circuits withallosteric ribozymes for scaling up molecular computation anddiagnostics. ACS Synth Biol. 2012;1:471-82.[Crossref]
  • [34] Pu F, Liu Z, Yang X, Ren J, Qu X. DNA-based logic gatesoperating as a biomolecular security device. Chem Commun(Camb). 2011;47:6024-6.[Crossref]
  • [35] Yoshida W, Yokobayashi Y. Photonic Boolean logic gates basedon DNA aptamers. Chem Commun (Camb). 2007:195-7.[Crossref]
  • [36] Zhang C, Yang J, Xu J. Circular DNA logic gates with stranddisplacement. Langmuir. 2010;26:1416-9.[Crossref]
  • [37] Qian L, Winfree E. Scaling up digital circuit computationwith DNA strand displacement cascades. Science.2011;332:1196-201.
  • [38] Weitz M, Kim J, Kapsner K, Winfree E, Franco E, Simmel FC.Diversity in the dynamical behaviour of a compartmentalizedprogrammable biochemical oscillator. Nat Chem.2014;6:295-302.[Crossref]
  • [39] Winfree E. Algorithmic Self-Assembly of DNA: TheoreticalMotivations and 2D Assembly Experiments. J Biomol StructDyn. 2000;17 Suppl 1:263-70.[Crossref]
  • [40] Barish RD, Rothemund PW, Winfree E. Two computationalprimitives for algorithmic self-assembly: copying and counting.Nano Lett. 2005;5:2586-92.[Crossref]
  • [41] Braich RS, Chelyapov N, Johnson C, Rothemund PW, AdlemanL. Solution of a 20-variable 3-SAT problem on a DNA computer.Science. 2002;296:499-502.[Crossref]
  • [42] Lipton RJ. DNA solution of hard computational problems.Science. 1995;268:542-5.
  • [43] Liu Q, Wang L, Frutos AG, Condon AE, Corn RM, Smith LM. DNAcomputing on surfaces. Nature. 2000;403:175-9.
  • [44] Xu J, Qiang X, Yang Y, Wang B, Yang D, Luo L, et al. Anunenumerative DNA computing model for vertex coloringproblem. IEEE Trans Nanobioscience. 2011;10:94-8.
  • [45] Buckhout-White S, Spillmann CM, Algar WR, Khachatrian A,Melinger JS, Goldman ER, et al. Assembling programmableFRET-based photonic networks using designer DNA scaffolds.Nat Commun. 2014;5:5615.[Crossref]
  • [46] Chakraborty S, Mizusaki H, Kenney LJ. A FRET-based DNAbiosensor tracks OmpR-dependent acidification of Salmonelladuring macrophage infection. PLoS Biol. 2015;13:e1002116.[Crossref]
  • [47] Kim J, Lee JS, Lee JB. Investigation of Forster resonance energytransfer (FRET) and competition of fluorescent dyes on DNAmicroparticles. Int J Mol Sci. 2015;16:7738-47.[Crossref]
  • [48] Mohd Bakhori N, Yusof NA, Abdullah AH, Hussein MZ.Development of a Fluorescence Resonance Energy Transfer(FRET)-Based DNA Biosensor for Detection of SyntheticOligonucleotide of Ganoderma boninense. Biosensors (Basel).2013;3:419-28.[Crossref]
  • [49] Zadegan RM, Jepsen MD, Hildebrandt LL, Birkedal V, Kjems J.Construction of a fuzzy and Boolean logic gates based on DNA.Small. 2015;11:1811-7.[Crossref]
  • [50] Deng H, Yang X, Gao Z. MoS2 nanosheets as an effectivefluorescence quencher for DNA methyltransferase activitydetection. Analyst. 2015;140:3210-5.[Crossref]
  • [51] Sato Y, Tian J, Ichihashi T, Chinda Y, Xu Z, Pang Y, et al.Enhancement in fluorescence response by a quencher foramiloride upon binding to thymine opposite an abasic site in aDNA duplex. Anal Chim Acta. 2010;675:49-52.
  • [52] Zhang J, Tao M, Jin Y. An enzyme-aided amplification strategyfor sensitive detection of DNA utilizing graphene oxide (GO) asa fluorescence quencher. Analyst. 2014;139:3455-9.
  • [53] Seelig G, Soloveichik D, Zhang DY, Winfree E. Enzyme-freenucleic acid logic circuits. Science. 2006;314:1585-8.
  • [54] Ajo-Franklin CM, Drubin DA, Eskin JA, Gee EP, Landgraf D,Phillips I, et al. Rational design of memory in eukaryotic cells.Genes Dev. 2007;21:2271-6.
  • [55] Goldman N, Bertone P, Chen S, Dessimoz C, LeProust EM, SiposB, et al. Towards practical, high-capacity, low-maintenanceinformation storage in synthesized DNA. Nature.2013;494:77-80.
  • [56] Lin CH, Cheng HP, Yang CB, Yang CN. Solving satisfiabilityproblems using a novel microarray-based DNA computer.Biosystems. 2007;90:242-52.[Crossref]
  • [57] Wu H. An improved surface-based method for DNAcomputation. Biosystems. 2001;59:1-5.[Crossref]
  • [58] Aghebat Rafat A, Pirzer T, Scheible MB, Kostina A, Simmel FC.Surface-assisted large-scale ordering of DNA origami tiles.Angew Chem Int Ed Engl. 2014;53:7665-8.[Crossref]
  • [59] Wei B, Dai M, Yin P. Complex shapes self-assembled fromsingle-stranded DNA tiles. Nature. 2012;485:623-6.
  • [60] Wei B, Vhudzijena MK, Robaszewski J, Yin P. Self-assembly ofComplex Two-dimensional Shapes from Single-stranded DNATiles. J Vis Exp. 2015.
  • [61] Mao C, LaBean TH, Relf JH, Seeman NC. Logical computationusing algorithmic self-assembly of DNA triple-crossovermolecules. Nature. 2000;407:493-6.
  • [62] Jiang Y, Liu N, Guo W, Xia F, Jiang L. Highly-efficient gating ofsolid-state nanochannels by DNA supersandwich structurecontaining ATP aptamers: a nanofluidic IMPLICATION logicdevice. J Am Chem Soc. 2012;134:15395-401.
  • [63] Douglas SM, Bachelet I, Church GM. A logic-gated nanorobotfor targeted transport of molecular payloads. Science.2012;335:831-4.
  • [64] Lederman H, Macdonald J, Stefanovic D, Stojanovic MN.Deoxyribozyme-based three-input logic gates and constructionof a molecular full adder. Biochemistry. 2006;45:1194-9.[Crossref]
  • [65] Pei R, Macdonald J, Stojanovic MN. Development of trainabledeoxyribozyme-based game playing automaton. Methods MolBiol. 2012;848:419-37.
  • [66] Stojanovic MN, Semova S, Kolpashchikov D, MacdonaldJ, Morgan C, Stefanovic D. Deoxyribozyme-based ligaselogic gates and their initial circuits. J Am Chem Soc.2005;127:6914-5.[Crossref]
  • [67] Zhang HR, Wang YZ, Wu MS, Feng QM, Shi HW, Chen HY, et al.Visual electrochemiluminescence detection of telomeraseactivity based on multifunctional Au nanoparticles modifiedwith G-quadruplex deoxyribozyme and luminol. Chem Commun(Camb). 2014;50:12575-7.[Crossref]
  • [68] Stojanovic MN, Mitchell TE, Stefanovic D. Deoxyribozyme-basedlogic gates. J Am Chem Soc. 2002;124:3555-61.[Crossref]
  • [69] Goni-Moreno A, Amos M. A reconfigurable NAND/NOR geneticlogic gate. BMC Syst Biol. 2012;6:126.[Crossref]
  • [70] Ji W, Shi H, Zhang H, Sun R, Xi J, Wen D, et al. A formalizeddesign process for bacterial consortia that perform logiccomputing. PLoS One. 2013;8:e57482.[Crossref]
  • [71] Ran T, Douek Y, Milo L, Shapiro E. A programmable NOR-baseddevice for transcription profile analysis. Sci Rep. 2012;2:641.
  • [72] Wang B, Kitney RI, Joly N, Buck M. Engineering modular andorthogonal genetic logic gates for robust digital-like syntheticbiology. Nat Commun. 2011;2:508.[Crossref]
  • [73] Moon TS, Lou C, Tamsir A, Stanton BC, Voigt CA. Geneticprograms constructed from layered logic gates in single cells.Nature. 2012;491:249-53.
  • [74] Guet CC, Elowitz MB, Hsing W, Leibler S. Combinatorialsynthesis of genetic networks. Science. 2002;296:1466-70.[Crossref]
  • [75] Bonnet J, Yin P, Ortiz ME, Subsoontorn P, Endy D. Amplifyinggenetic logic gates. Science. 2013;340:599-603.
  • [76] Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E. Anautonomous molecular computer for logical control of geneexpression. Nature. 2004;429:423-9.[Crossref]
  • [77] Gil B, Kahan-Hanum M, Skirtenko N, Adar R, Shapiro E.Detection of multiple disease indicators by an autonomousbiomolecular computer. Nano Lett. 2011;11:2989-96.[Crossref]
  • [78] Shapiro E, Gil B. Cell biology. RNA computing in a living cell.Science. 2008;322:387-8.
  • [79] Afonin KA, Grabow WW, Walker FM, Bindewald E, DobrovolskaiaMA, Shapiro BA, et al. Design and self-assembly of siRNAfunctionalizedRNA nanoparticles for use in automatednanomedicine. Nat Protoc. 2011;6:2022-34.[Crossref]
  • [80] Faulhammer D, Cukras AR, Lipton RJ, Landweber LF. Molecularcomputation: RNA solutions to chess problems. Proc Natl AcadSci U S A. 2000;97:1385-9.[Crossref]
  • [81] Daniel C, Lagergren J, Ohman M. RNA editing of non-codingRNA and its role in gene regulation. Biochimie. 2015.
  • [82] Benenson Y. RNA-based computation in live cells. Curr OpinBiotechnol. 2009;20:471-8.[Crossref]
  • [83] Cukras AR, Faulhammer D, Lipton RJ, Landweber LF. Chessgames: a model for RNA based computation. Biosystems.1999;52:35-45.[Crossref]
  • [84] Davidson EA, Ellington AD. Synthetic RNA circuits. Nat ChemBiol. 2007;3:23-8.[Crossref]
  • [85] Rodrigo G, Landrain TE, Jaramillo A. De novo automated designof small RNA circuits for engineering synthetic riboregulation inliving cells. Proc Natl Acad Sci U S A. 2012;109:15271-6.[Crossref]
  • [86] Lucks JB, Qi L, Mutalik VK, Wang D, Arkin AP. VersatileRNA-sensing transcriptional regulators for engineering geneticnetworks. Proc Natl Acad Sci U S A. 2011;108:8617-22.[Crossref]
  • [87] Leisner M, Bleris L, Lohmueller J, Xie Z, Benenson Y. Rationallydesigned logic integration of regulatory signals in mammaliancells. Nat Nanotechnol. 2010;5:666-70.[Crossref]
  • [88] Chappell J, Watters KE, Takahashi MK, Lucks JB. A renaissancein RNA synthetic biology: new mechanisms, applications andtools for the future. Curr Opin Chem Biol. 2015;28:47-56.[Crossref]
  • [89] Gallivan JP. RNA synthetic biology: from the test tube to cellsand back again. ACS Synth Biol. 2015;4:493-4.[Crossref]
  • [90] Isaacs FJ, Dwyer DJ, Collins JJ. RNA synthetic biology. NatBiotechnol. 2006;24:545-54.[Crossref]
  • [91] Afonin KA, Bindewald E, Kireeva M, Shapiro BA. Computationaland experimental studies of reassociating RNA/DNAhybrids containing split functionalities. Methods Enzymol.2015;553:313-34.
  • [92] Afonin KA, Bindewald E, Yaghoubian AJ, Voss N, JacovettyE, Shapiro BA, et al. In vitro assembly of cubic RNA-basedscaffolds designed in silico. Nat Nanotechnol. 2010;5:676-82.[Crossref]
  • [93] Khisamutdinov EF, Bui MN, Jasinski D, Zhao Z, Cui Z, GuoP. Simple Method for Constructing RNA Triangle, Square,Pentagon by Tuning Interior RNA 3WJ Angle from 60degrees to 90 degrees or 108 degrees. Methods Mol Biol.2015;1316:181-93.
  • [94] Khisamutdinov EF, Jasinski DL, Guo P. RNA as a boiling-resistantanionic polymer material to build robust structures withdefined shape and stoichiometry. ACS Nano. 2014;8:4771-81.[Crossref]
  • [95] Jasinski DL, Khisamutdinov EF, Lyubchenko YL, Guo P. Physicochemicallytunable polyfunctionalized RNA square architecturewith fluorogenic and ribozymatic properties. ACS Nano.2014;8:7620-9.[Crossref]
  • [96] Shu Y, Haque F, Shu D, Li W, Zhu Z, Kotb M, et al. Fabricationof 14 different RNA nanoparticles for specific tumor targetingwithout accumulation in normal organs. RNA. 2013;19:767-77.
  • [97] Lambowitz AM, Zimmerly S. Group II introns: mobileribozymes that invade DNA. Cold Spring Harb Perspect Biol.2011;3:a003616.
  • [98] Khvorova A, Lescoute A, Westhof E, Jayasena SD. Sequenceelements outside the hammerhead ribozyme catalytic coreenable intracellular activity. Nat Struct Biol. 2003;10:708-12.[Crossref]
  • [99] Win MN, Smolke CD. Higher-order cellular informationprocessing with synthetic RNA devices. Science.2008;322:456-60.
  • [100] Chen YY, Jensen MC, Smolke CD. Genetic control ofmammalian T-cell proliferation with synthetic RNA regulatorysystems. Proc Natl Acad Sci U S A. 2010;107:8531-6.[Crossref]
  • [101] Lee SK, Calin GA. Genetic control of mammalian T-cellproliferation with a synthetic RNA regulatory system - illusionor reality? Genome Med. 2010;2:77.[Crossref]
  • [102] Penchovsky R, Breaker RR. Computational design andexperimental validation of oligonucleotide-sensing allostericribozymes. Nat Biotechnol. 2005;23:1424-33.[Crossref]
  • [103] Penchovsky R. Computational design of allosteric ribozymes asmolecular biosensors. Biotechnol Adv. 2014;32:1015-27.[Crossref]
  • [104] Ellington AD, Szostak JW. In vitro selection of RNAmolecules that bind specific ligands. Nature. 1990;346:818-22.
  • [105] Hermann T, Patel DJ. Adaptive recognition by nucleic acidaptamers. Science. 2000;287:820-5.
  • [106] Sudarsan N, Hammond MC, Block KF, Welz R, Barrick JE,Roth A, et al. Tandem riboswitch architectures exhibit complexgene control functions. Science. 2006;314:300-4.[Crossref]
  • [107] Garst AD, Edwards AL, Batey RT. Riboswitches: structures andmechanisms. Cold Spring Harb Perspect Biol. 2011;3.
  • [108] Serganov A, Nudler E. A decade of riboswitches. Cell.2013;152:17-24.
  • [109] Topp S, Gallivan JP. Riboswitches in unexpectedplaces--a synthetic riboswitch in a protein coding region. RNA.2008;14:2498-503.[Crossref]
  • [110] Breaker RR. Riboswitches and the RNA world. Cold Spring HarbPerspect Biol. 2012;4.
  • [111] Sudarsan N, Hammond MC, Block KF, Welz R, Barrick JE, RothA, et al. Tandem riboswitch architectures exhibit complex genecontrol functions. Science. 2006;314:300-4.[Crossref]
  • [112] Tabara H, Grishok A, Mello CC. RNAi in C. elegans: soaking inthe genome sequence. Science. 1998;282:430-1.
  • [113] Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC.Potent and specific genetic interference by double-strandedRNA in Caenorhabditis elegans. Nature. 1998;391:806-11.
  • [114] Timmons L, Fire A. Specific interference by ingested dsRNA.Nature. 1998;395:854.
  • [115] Bich Ngoc Dao MV, Angelica N. Martins, Wojciech K. Kasprzak,Bruce A. Shapiro, Kirill A. Afonin. Triggering RNAi withmultifunctional RNA nanoparticles and their delivery. DNA andRNA nanotechnology. 2015;2:12.
  • [116] Xie Z, Wroblewska L, Prochazka L, Weiss R, Benenson Y.Multi-input RNAi-based logic circuit for identification of specificcancer cells. Science. 2011;333:1307-11.[Crossref]
  • [117] Rinaudo K, Bleris L, Maddamsetti R, Subramanian S, WeissR, Benenson Y. A universal RNAi-based logic evaluatorthat operates in mammalian cells. Nat Biotechnol.2007;25:795-801.[Crossref]
  • [118] Leisner M, Bleris L, Lohmueller J, Xie Z, Benenson Y.MicroRNA circuits for transcriptional logic. Methods Mol Biol.2012;813:169-86.
  • [119] Afonin KA, Kasprzak W, Bindewald E, Puppala PS, Diehl AR, HallKT, et al. Computational and experimental characterization ofRNA cubic nanoscaffolds. Methods. 2014;67:256-65.[Crossref]
  • [120] Guo P. RNA nanotechnology: engineering, assembly andapplications in detection, gene delivery and therapy. J NanosciNanotechnol. 2005;5:1964-82.[Crossref]
  • [121] Afonin KA, Viard M, Kagiampakis I, Case CL, DobrovolskaiaMA, Hofmann J, et al. Triggering of RNA interference withRNA-RNA, RNA-DNA, and DNA-RNA nanoparticles. ACS Nano.2015;9:251-9.[Crossref]
  • [122] Tan C, Song H, Niemi J, You L. A synthetic biology challenge:making cells compute. Mol Biosyst. 2007;3:343-53.[Crossref]
  • [123] Benenson Y. Biomolecular computing systems: principles,progress and potential. Nat Rev Genet. 2012;13:455-68.[Crossref]
  • [124] Fedichkin L, Katz E, Privman V. Error correction and digitalizationconcepts in biochemical computing. Journal ofComputational and Theoretical Nanoscience. 2008;5:36-43.
  • [125] Privman V, Arugula MA, Halamek J, Pita M, Katz E. Networkanalysis of biochemical logic for noise reduction and stability:a system of three coupled enzymatic and gates. J Phys Chem B.2009;113:5301-10.[Crossref]
  • [126] Privman V, Strack G, Solenov D, Pita M, Katz E. Optimization ofenzymatic biochemical logic for noise reduction and scalability:how many biocomputing gates can be interconnected in acircuit? J Phys Chem B. 2008;112:11777-84.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_rnan-2015-0003
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.