Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 2 | 1 |

Article title

In situ time-resolved HEROS study of Pt electronic
structure during regenerative H2-O2 cycles

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
We report an in situ time-resolved high-energy
resolution off-resonant spectroscopy (HEROS) study with
unprecedented 100 ms time resolution revealing the
unoccupied electronic states of platinum during regenerative
oxidation and reduction cycles. The study depicted a
slowed oxidation step in comparison with reduction. The
oxidation cycle is composed of two characteristic stages,
namely adsorption of dissociated oxygen followed by partial
oxidation of Pt subsurface. Besides improved temporal
resolution of the experiment, the detected reduction process
of platinum showed no intermediate features and was
completed in a single step within a few seconds.

Publisher

Year

Volume

2

Issue

1

Physical description

Dates

online
17 - 4 - 2015
accepted
23 - 3 - 2015
received
27 - 2 - 2015

Contributors

author
  • Institute of Physical Chemistry,
    Polish Academy of Sciences, Warsaw, Poland; Ångstrom Laboratory,
    Department of Chemistry, Uppsala University, Uppsala, Sweden

References

  • [1] http://www.platinum.matthey.com/about-pgm/applications
  • [2] a) Ertl, G., Knözinger, H., Schüth, F. and Weitkamp, J. (2008)Handbook of Heterogeneous Catalysis, Wiley-VCH, Germany; b)Lloyd, L. (2011) Handbook of Industrial Catalysis, Fundamentaland Applied Catalysis Series, Springer, Germany; c) Sá, J.(2014) Fuel Production with Heterogeneous Catalysis, CRCPress, Taylor & Francis Group, USA.
  • [3] for example: a) Strasser, P., Koh, S., Anniyev, T., Greeley, J.,More, K., Yu, C., Liu, Z., Kaya, S., Nordlund, D., Ogasawara, H.,Toney, M. F. and Nilson, A. (2010) “Lattice-strain control of theactivity in dealloyed core–shell fuel cell catalysts,” Nat. Chem.2, 454-460; b) Zhang, J. L., Vukmirovic, M. B., Mavrikakis, M.and Adzic, R. R. (2005) “Controlling the Catalytic Activity ofPlatinum-Monolayer Electrocatalysts for Oxygen Reduction withDifferent Substrates,”Angew. Chem. Int. Ed. 44 (14), 2132-2135;c) Greeley, J., Stephens, I. E. L., Bondarenko, A. S., Johansson,T. P., Hansen, H. A., Jaramillo, T. F., Rossmeisl, J., Chrokendorff,I. and Nørskov, J. K. (2009) “Alloys of platinum and earlytransition metals as oxygen reduction electrocatalysts,” Nat.Chem. 1, 552-556; d) Stamenkovic, V. R., Fowler, B., Mun, B.S., Wang, G. F., Ross, P. N., Lucas, C. A. and Markovic, N. M.(2007) “Improved Oxygen Reduction Activity on Pt3Ni(111)via Increased Surface Site Availability,” Science 315 (5811),493-497.
  • [4] a) Hammer, B. and Nørskov, J. K. (1995) “Why gold is thenoblest of all the metals,” Nature 376, 238-240; b) Hammer,B. and Nørskov, J. K. (2000) “Theoretical Surface Scienceand Catalysis-Calculations and Concepts,”Adv. Catal. 45(2000) 71; c) Lima, F. H. B., Zhang, J., Shao, M. H., Sasaki,K., Vukmirovic, M. B., Ticianelli, E. A. and Adzic, R. R. (2007) “Catalytic Activity−d-Band Center Correlation for the O2Reduction Reaction on Platinum in Alkaline Solutions,” J.Phys. Chem. C 111 (1) 404-410; d) Heiz, U. and Bullock, E. L.(2004) “Fundamental aspects of catalysis on supported metalclusters,” J. Mater. Chem. 14, 564-577.
  • [5] Sá, J. (2014) High-Resolution XAS/XES: Analyzing ElectronicStructures of Catalysts, CRC Press, Taylor & Francis Group, USA.
  • [6] a) Friebel, D., Miller, D. J., Nordlund, D., Ogasawara, H.and Nilsson, A. (2011) “Degradation of Bimetallic ModelElectrocatalysts: An In Situ X-Ray Absorption SpectroscopyStudy,” Angew. Chem. 123 (43) 10372-10374; b) Friebel, D.,Viswanathan, V., Miller, D. J., Anniyev, T., Ogasawara, H.,Larsen, A. H., O’Grady, C. P., Nørskov, J. K. and Nilsson, A.(2012) “Balance of Nanostructure and Bimetallic Interactions inPt Model Fuel Cell Catalysts: In Situ XAS and DFT Study,” J. Am.Chem. Soc. 134 (23) 9664-9671.
  • [7] Bauer, P. R., Bonnefont, A. and Krischer, K. (2010) “SpatiallyResolved ATR-FTIRS Study of the Formation of MacroscopicDomains and Microislands during CO Electrooxidation on Pt,”ChemPhysChem 11 (13) 3002-3010.[WoS]
  • [8] a) Szlachetko, J., Nachtegaal, M., Sá, J., Dousse, J.-C.,Hoszowska, J., Kleymenov, E., Janousch, M., Safonova, O.V. and van Bokhoven, J. A. (2012) “High energy resolutionoff-resonant spectroscopy at sub-second time resolution:(Pt(acac)2) decomposition,” Chem. Commun. 48, 10898-10900;b) Szlachetko, J., Milne, C. J., Hoszowska, J., Dousse, J.-Cl.,Błachucki, W., Sá, J., Kayser, Y., Messerschmidt, M., Abela,R., Boutet, S., David, C., Williams, G., Pajek, M., Patterson,B. D., Smolentsev, G., van Bokhoven, J. A. and Nachtegaal, M(2014) “The electronic structure of matter probed with a singlefemtosecond hard x-ray pulse,” Struct. Dyn. 1, 021101.[Crossref]
  • [9] Szlachetko, J., Nachetgaal, M., de Boni, E., Safonova, O., Sá, J.,Smolentsev, G., Szlachetko, M., van Bokhoven, J. A., Dousse,J.-C., Hoszowska, J., Kayser, Y., Jagodzinski, P., Bergamaschi,A., Schmid, B., David, C. and Lücke, A. (2012) “A von Hamosx-ray spectrometer based on a segmented-type diffractioncrystal for single-shot x-ray emission spectroscopy andtime-resolved resonant inelastic x-ray scattering studies,” Rev.Sci. Instrum. 83, 103105.
  • [10] Szlachetko, J., Ferri, D., Marchionni, V., Kambolis, A., Safonova,O. V., Milne, C. J., Kröcher, O., Nachetgaal, M. and Sá, J.(2013) “Subsecond and in situ chemical speciation of Pt/Al2O3during oxidation-reduction cycles monitored by high-energyresolution off-resonant X-ray spectroscopy,” J. Am. Chem. Soc.135(51) 19071-19074.[WoS]
  • [11] Błachucki, W., Szlachetko, J., Hoszowska, J., Dousse, J.-Cl.,Kayser, Y., Nachtegaal, M. and Sá, J. (2014) “High EnergyResolution Off-Resonant Spectroscopy for X-Ray AbsorptionSpectra Free of Self-Absorption Effects,” Phys. Rev. Lett. 112,173003.[Crossref][WoS]
  • [12] a) Clausen, B. S., Gråbæk, L., Steffensen, G., Hansen, P. L.and Topsøe, H. (1993) “A combined QEXAFS/XRD method foron-line, in situ studies of catalysts: Examples of dynamicmeasurements of Cu-based methanol catalysts,” Catal. Lett. 20(1-2) 23-36; b) Couves, J. W., Thomas, J. M., Waller, D., Jones,R. H., Dent, A. J., Derbyshire, G. E. and Greaves, G. N. (1991) “Tracing the conversion of aurichalcite to a copper catalyst bycombined X-ray absorption and diffraction,” Nature 354 (6353)465-468; c) Tsakoumis, N. E., Voronov, A., Rønning, M, vanBeek, W., Borg, Ø., Rytter, E. and Holmen, A. (2012) “Fischer–Tropsch synthesis: An XAS/XRPD combined in situ study fromcatalyst activation to deactivation,” J. Catal. 291, 138-148.
  • [13] A. N. Mansour, J. W. Cook, D. E. Sayers, (1984) “Quantitativetechnique for the determination of the number of unoccupiedd-electron states in a platinum catalyst using the L2,3 x-rayabsorption edge spectra,”J. Phys. Chem. 88 (11) 2330-2334.
  • [14] a) Friebel, D., Miller, D. J., O’Grady, C. P., Anniyev, T., Bargar,J., Bergmann, U., Ogasawara, H., Wikfeldt, K. T., Pettersson,L. G. M. and Nilsson, A. (2011) “In situ X-ray probing revealsfingerprints of surface platinum oxide,” Phys. Chem. Chem.Phys. 13, 262-266; b) Erickson, E. M., Thorum, M. S., Vasić, R.,Marinković, N. S., Frenkel, A. I., Gewirth, A. A. and Nuzzo, R. G.(2012) “In Situ Electrochemical X-ray Absorption Spectroscopyof Oxygen Reduction Electrocatalysis with High Oxygen Flux,” J.Am. Chem. Soc., 134 (1) 197–200[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_recat-2015-0004
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.