Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 17 | 3 | 52-61

Article title

Homogeneous catalytic systems for selective oxidation of methane: state of the art

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Homogeneous catalysts for methane oxidation are of a particular interest from scientific and economic points of view. The results show a great potential for activation and functionalization of CH bonds of unreactive methane. There are still gaps in the knowledge of how to rationally design catalysts for this process. In this paper state-of-the-art. in methane oxidation homogenous catalysis is presented.

Publisher

Year

Volume

17

Issue

3

Pages

52-61

Physical description

Dates

published
1 - 9 - 2015
online
19 - 9 - 2015

Contributors

author
  • West Pomeranian University of Technology, Szczecin, Pulaskiego 10, 70-322 Szczecin, Poland

References

  • 1. Energy Information Administration, Natural Gas Reserves (2013),
  • 2. Michalkiewicz, B., Sreńscek-Nazzal, J. & Ziebro, J. (2009). Optimization of synthesis gas formation in methane reforming with carbon dioxide. Catal. Lett. 129, 142–148. DOI: 10.1007/s10562-008-9797-6.[Crossref]
  • 3. Rynkowski, J.M., Paryjczak, T. & Lenik, M. (1993). On the nature of oxidic nickel phase in NiO/γ-Al2O3 catalysts. Appl Catal A. 106, 73. DOI: 10.1016/0926-860X(93)80156-K.[Crossref]
  • 4. Ziebro, J., Łukasiewicz, I., Grzmil, B., Borowiak-Palen, E. & Michalkiewicz, B. (2009). Synthesis of nickel nanocapsules and carbon nanotubes via methane CVD. J. Alloys Compd. 485, 695–700. DOI: 10.1016/j.jallcom.2009.06.039.[Crossref]
  • 5. Ziebro, J., Łukasiewicz, I., Borowiak-Palen, E. & Michalkiewicz, B. (2010). Low temperature growth of carbon nanotubes from methane catalytic decomposition over nickel supported on a zeolite, Nanotechnology 21, 145308. DOI: 10.1088/0957-4484/21/14/145308.[Crossref]
  • 6. Ziebro, J., Skorupińska, B., Kądziołka, G. & Michalkiewicz, B. (2013). Synthesizing multi-walled carbon nanotubes over supported-nickel catalyst. Fuller. Nanotub. Car. N. 21, 333–345. DOI: 10.1080/1536383X.2011.613543.[Crossref]
  • 7. Michalkiewicz, B. & Majewska, J. (2013). Low temperature one-step synthesis of cobalt nanowires encapsulated in carbon. Appl. Phys. A 111, 1013–1016. DOI: 10.1007/s00339-013-7698-z.[Crossref]
  • 8. Ziebro, J., Łukasiewicz, I., Borowiak-Palen, E. & Michalkiewicz, B. (2010). Low temperature growth of carbon nanotubes from methane catalytic decomposition over nickel supported on a zeolite. Nanotechnology 21, 145308. DOI: 10.1088/0957-4484/21/14/145308.[Crossref]
  • 9. Sen, A. & Lin, M. (2003). Catalytic partial oxidation of methane to methanol and formaldehyde, Am. Chem. Soc., 48, 2, 827. DOI: 10.1007/s11244-005-2888-3.[Crossref]
  • 10. Dreisbach, F., Losch, H.W. & Harting, P. (2002). Highest pressure adsorption equilibrium data: measurement with magnetic suspension balance and analysis with a new adsorbent/adsorbate-volume. Adsorption 8, 95. DOI: 10.1023/A:1020431616093.[Crossref]
  • 11. Srenscek-Nazzal, J., Kaminska, W., Michalkiewicz, B. & Koren, Z.C. (2013). Production, characterization and methane storage potential of KOH-activated carbon from sugarcane molasses, Industrial Crops And Products 47, 153–159. DOI: 10.1016/j.indcrop.2013.03.004.[Crossref]
  • 12. Azevedo, D.C.S., Cassia, J., Araujo, S., Bastos-Neto, M., Eurico, A., Torres, B. & Jaguaribe E.F. (2007). Microporous activated carbon prepared from coconut shells using chemical activation with zinc chloride. Microporous Mesoporous Mater. Cavalcante C.L. 100, 361–364. DOI: 10.1016/j.micromeso.2006.11.024.[Crossref]
  • 13. Sreńscek-Nazzal, J. & Michalkiewicz, B. (2011). The simplex optimization for high porous carbons preparation, Pol. J. Chem. Tech. 13(4), 63–70. DOI: 10.2478/v10026-011-0051-4.[Crossref]
  • 14. Lin, M. & Sen, A. (1992). A highly catalytic system for the direct oxidation of lower alkanes by dioxygen in aqueous medium. A formal heterogeneous analog of alkane monooxygenases, J. Am. Chem. Soc. 114, 7307. DOI: 10.1021/ja00044a059.[Crossref]
  • 15. Hammond, C., Forde, M.M, Rahim, M.H.A., Thetford, A., He, Q., Jenkins, R.L., Dimitratos, N. & Lopez-Sanchez, J.A. (2012). Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5, Chemistry – A European Journal 18, 49, 15735–15745. DOI: 10.1002/anie.201108706.[Crossref]
  • 16. Gang, X., Birch, H., Zhu, Y., Hjuler, H.A., Bjerrum N. J. (2000). Direct Oxidation of Methane to Methanol by Mercuric Sulfate Catalyst, Journal of Catalysis, 196, 2, 287–292. DOI: 10.1006/jcat.2000.3051.[Crossref]
  • 17. Yamada, Y., Ueda, A., Shioyama, H. & Kobayashi, T. (2003). High – throughput experiments on methane partial oxidations using molecular oxygen over silica doped with various elements, Appl. Catal. A. 254, 45. DOI: 10.1016/S0926-860X(03)00262-X.[Crossref]
  • 18. Otsuka, K. & Hatano, M. (1987). The catalysts for the synthesis of formaldehyde by partial oxidation of methane, J. Catal. 108, 252. DOI: 10.1016/0021-9517(87)90172-2.[Crossref]
  • 19. Parmaliana, A., Frusteri, F., Mezzapica, A., Scurrel, M. S. & Giordano, N. (1993). Novel high activity catalyst for partial oxidation of methane to formaldehyde, J. Chem. Soc. Chem. Commun. 751. DOI: 10.1039/C39930000751.[Crossref]
  • 20. Weng, T. & Wolf, E.E. (1993). Partial oxidation of methane on mo/sn/p silica supported catalysts, Appl. Catal., 96, 383 DOI: 10.1016/0926-860X(90)80024-9.[Crossref]
  • 21. Otsuka, K. & Wang, Y. (2001). Direct conversion of methane into oxygenates, Appl. Catal., 222, 145. DOI: 10.1016/S0926-860X(01)00837-7.[Crossref]
  • 22. Spencer, N.D. (1988). Partial oxidation of methane to formaldehyde by means of molecular oxygen, J. Catal., 109, 143. DOI: 10.1016/0021-9517(88)90197-2.[Crossref]
  • 23. Otsuka, K., Komatsu, T., Jinno, K., Uragami, Y. & Morikawa, A. (1988). Proceedings of the 9th International Congress on Catalysis, The Chemical Institute of Canada, Ottawa, 915.
  • 24. Kastsnas, G.N., Tsigdios, G.A. & Schwank, J. (1988). Selective oxidation of methane over vycor glass, quartz glass and various silica, magnesia and alumina surfaces, Appl. Catal. A., 44, 33–51. DOI: 10.1016/S0166-9834(00)80043-3.[Crossref]
  • 25. Alptakin, G.O., Herring, A.M., Williamson, D.L., Ohno, T.R. & McCormick, R.L. (1999). Methane Partial Oxidation by Unsupported and Silica Supported Iron Phosphate Catalysts: Influence of Reaction Conditions and Co-Feeding of Water on Activity and Selectivity, J. Catal., 181, 104–112. DOI: 10.1006/jcat.1998.2297.[Crossref]
  • 26. Sinev. M.Y., Setiadi, S. & Otsuka, K. (1993). Selectivity Control by Oxygen Pressure in Methane Oxidation over Phosphate Catalysts, Mendeleev Commun., 10. DOI: 10.1016/S0167-2991(08)63427-8.[Crossref]
  • 27. Hargreaves, J.S.J., Hutchings, G.J. & Joyner, R.W. (1990). Control of product selectivity in the partial oxidation of Methane, Nature, 348, 428. DOI: 10.1038/348428a0.[Crossref]
  • 28. Michalkiewicz, B., Srenscek-Nazzal, J., Tabero, P., Grzmil, B. & Narkiewicz, U. (2008). Chemical Papers, 62, 1, 106–113. DOI: 10.2478/s11696-007-0086-4.[Crossref]
  • 29. Kałucki, K. & Michalkiewicz, B. (2001). The effect of boron and magnesium additives on catalytic perform of Mo-0/Si02 in the partial oxidation of methane, Pol. J. Chem. Tech., 3, 16–19.
  • 30. Parmaliana, A., Frusteri, F., Arena, F., Mezzapica, A. & Sokolovskii, V. (1998). Synthesis of methyl formate via two-step methane partial oxidation, Catal. Today, 46, 117–125. DOI: 10.1016/S0920-5861(98)00333-2.[Crossref]
  • 31. Durante, V. & Walker, D. (1990). EP 0393895.
  • 32. Labinger, J.A. (1995). Methane activation in homogeneous systems, Fuel Process. Technol., 42, 325–338. DOI: 10.1016/0378-3820(94)00107-5.[Crossref]
  • 33. Kaleńczuk, R.J. & Ciarka, A. (2005). Materialy XXXVII Ogolnopolskiego Kolokwium Katalitycznego, 88.
  • 34. Kudo, H. & Ono, T. (1997). Partial oxidation of CH4 over ZSM-5 catalysts, Appl. Sci., 121/122, 413–416. DOI: 10.1016/S0169-4332(97)00348-6.
  • 35. Michalkiewicz, B. (2004). Partial oxidation of methane to formaldehyde and methanol using molecular oxygen over Fe-ZSM-5, Appl. Catal. A, 277, 147–153 DOI: 10.1016/j.apcata.2004.09.005.[Crossref]
  • 36. Michalkiewicz, B. (2005) Kinetics of Partial Methane Oxidation Process over the Fe-ZMS-5 Catalysts, Chem. Pap., 59, 403–408 DOI: 10.1016/j.apcata.2004.09.005.
  • 37. Hunter, N.R., Gesser, H.D., Morton, L.A. & Fung, D.P.C., Prepr. 35 th Can. Chem. Eng. Conf., Calgary 6–9 Oct 1985.
  • 38. Rytz, D.W. & Baiker, A. (1991). Partial oxidation of methane to methanol in a flow reactor an elevated pressure, Ind. Eng. Chem. Res., 30, 2287–2292. DOI: 10.1021/ie00058a007.[Crossref]
  • 39. Shilov, A.E. & Shul’pin, G.B. (1997). Activation of C-H Bonds by Metal Complexes, Chem. Rev., 97, 2879–2932. DOI:10.1021/cr9411886.[Crossref]
  • 40. Fu, G. & Xu, X. Mechanistic Insights into Selective Oxidation of Light Alkanes by Transition Metal Compounds/Complexes. In Computational Organometallic Chemistry; Wiest, O., Wu, Y., Eds.; Springer-Verlag: Berlin Heidelberg, Germany, 2012.
  • 41. Gol’dshleger, N.F., Es’kova, V.V., Shilov, A.E. & Steinman, A.A. (1972). Zh.Fiz. Khim., 46, 1353.
  • 42. Lin, M., Hogan, T. & Sen, A. (1997). A Highly Catalytic Bimetallic System for the Low-Temperature Selective Oxidation of Methane and Lower Alkane with Dioxygen as the Oxidant, J. Am. Chem. Soc., 119, 6048–6053. DOI: 10.1021/ja964371k.[Crossref]
  • 43. Lin, M. & Sen, A. (1996) US 5, 510, 525.
  • 44. Lin, M., Hogan, T. & Sen, A. (1996). Catalytic Carbon–Carbon and Carbon–Hydrogen Bond Cleavage in Lower Alkanes. Low-Temperature Hydroxylations and Hydroxycarbonylations with Dioxygen as the Oxidant, J. Am. Chem. Soc., 118, 4574–4580. DOI: 10.1021/ja953670r.[Crossref]
  • 45. Park, E.D., Choi, S.H. & Lee, J.S. (2000). Characterization of Pd/C and Cu catalysts for the oxidation of methane to a methanol derivative, J. Catal., 194, 1, 33–34. DOI: 10.1006/jcat.2000.2907.[Crossref]
  • 46. Park, E.D., Hwang, Y.S. & Lee, J.S. (2001). Direct conversion of methane into oxygenates by H2O2 generated in situ from dihydrogen and dioxygen, Catalysis Com.,187–190, DOI: 10.1016/S1566-7367(01)00030-9.[Crossref]
  • 47. Ellis, P.E. & Lyons, J.E. (1990), EP 0 471 561.
  • 48. Ellis, P.E. & Lyons, J.E. (1992), EP 0 532 327.
  • 49. Nizova, G.V., Süss-Fink, G. & Shul’pin, G.B. (1997). Catalytic oxidation of methane to methyl hydroperoxide and other oxygenates under mild conditions, Chem. Commun., 397–398. DOI: 10.1039/A607765J.[Crossref]
  • 50. Nizova, G.V., Süss-Fink, G., Stanislas, S. & Shul’pin, G.B. (1998). xidations by the reagent O2–H2O2 – vanadate anion – pyrazine-2-carboxylic acid’.: Part 10. Oxygenation of methane in acetonitrile and water, J. Mol. Catal. A. Chem., 130, 1–2, 163–170 DOI: 10.1016/S1381-1169(97)00210-0.[Crossref]
  • 51. Lee, B-J., Kitsukawa, S., Nakagawa, H., Asakura, S. & Fukuda, K. (1998). The Partial Oxidation of Methane to Methanol with Nitrite and Nitrate Melts, Z. Naturforsch., 679.
  • 52. Peng, J. & Deng, Y. (2000). Direct catalytic conversion of methane in molten salt medium system under mild conditions, Appl. Catal. A, 201, 2, 155–157. DOI: 10.1016/S0926-860X(00)00561-5.[Crossref]
  • 53. Sherman, J.H. (1999). US 5954925.
  • 54. Stauffer, J.E. (1993). US 5185479.
  • 55. Seki, Y., Mizuno, N. & Misono, M. (1997). High-yield liquid-phase oxygenation of methane with hydrogen peroxide catalyzed by 12-molybdovanadophosphoric acid catalyst precursor, Appl. Catal. A.,158, 1–2, 47–51. DOI: 10.1016/S0926-860X(97)00177-4.[Crossref]
  • 56. Seki, Y., Min, J. S., Mizuno, N. & Misono, M. (2000). Reaktion mechanism of oxidation of methane with hydrogen-peroxide catalysed by 1,1 – molybdo – 1 vanadophosphoric acid catalyst precursor, J. Phys. Chem. B.,104, 5940–5944. DOI: 10.1021/jp000406y.
  • 57. Periana, R.A., Taube, H. & Evitt, E.R. (1993). US 5, 233, 113.
  • 58. Periana, R.A., Taube, D.J., Gamble, S., Taube, H., Satoh, T. & Fujii, H. (1998). Platinum Catalysts for the High-Yield Oxidation of Methane to a Methanol Derivative, Science, 280 560–564. DOI: 10.1126/science.280.5363.560.[Crossref]
  • 59. Michalkiewicz, B., Kałucki, K. & Sośnicki, J.G. (2003). Catalytic system containing metallic palladium in the process methane partial oxidation, J. Catal., 215, 14–19. DOI: 10.1016/S0021-9517(02)00088-X.[Crossref]
  • 60. Mukhopadhyay, S. & Bell, A.T. (2003). Direct catalytic sulfonation of methane with SO2 to methanesulfonic acid (MSA) in the presence of molecular O2, Chem. Commun, 1590–1591. DOI: 10.1039/B303561A.[Crossref]
  • 61. Mukhopadhyay, S., Bell, A.T. & Zerella, M. (2005). A High-Yield, Liquid-Phase Approach for the Partial Oxidation of Methane to Methanol using SO3 as the Oxidant, Adv.Synth. Catal., 347, 1203–1206. DOI: 10.1002/adsc.200404394.[Crossref]
  • 62. Cheng, J., Li, Z., Haught, M. & Tang, Y. (2006) Direct methane conversion to methanol by ionic liquid-dissolved platinum catalysts, Chem. Commun., 4617–4619. DOI: 10.1039/b610328f.[Crossref]
  • 63. Periana, R.A., Taube, D.J., Evitt, E.R., Löffler, D.G., Wentrcek, P.R., Voss, G. & Masuda, T. (1993). A Mercury-Catalyzed, High-Yield System for the Oxidation of Methane to Methanol, Science, 259 340–343. DOI: 10.1126/science.259.5093.340.[Crossref]
  • 64. Gang, X., Birch, H., Zhu, Y., Hjuler, H.A. & Bjerrum, N.J. (2000). Direct Oxidation of Methane to Methanol by Mercuric Sulfate Catalyst, J. Catal. 196, 2, 287–292. DOI: 10.1006/jcat.2000.3051.[Crossref]
  • 65. Sen, A., Benvenuto, M.A., Lin, M., Hutson, A.C. & Basickes, N. (1994). Activation of Methane and Ethane and Their Selective Oxidation to the Alcohols in Protic Media, J. Am. Chem. Soc. 116, 3, 998–1003 DOI: 10.1021/ja00082a022.[Crossref]
  • 66. Basickes, N., Hogan, T.E. & Sen, A. (1996). Radical-Initiated Functionalization of Methane and Ethane in Fuming Sulfuric Acid, J. Am. Chem. Soc., 118, 51, 13111–13112 DOI: 10.1021/ja9632365.[Crossref]
  • 67. Mukhopadhyay, S. & Bell, A.T. (2004). Catalyzed sulfonation of methane to methanesulfonic acid, Journal of Molecular Catalysis, 211,1 – 2, 59–65. DOI: 10.1016/j.molcata.2003.10.015.[Crossref]
  • 68. Fu, G., Xu, X. & Wan, H. (2006). Mechanism of methane oxidation by transition metal oxides: A cluster model study, Catal. Today, 117, 1–3, 133–137. DOI: 10.1016/j.cattod.2006.05.048.[Crossref]
  • 69. Carley A.F., Davies P.R. & Roberts M.W. (2005). Activation of oxygen at metal surfaces, Phil. Trans. R. Soc. A, 363, 829–846. DOI:10.1098/rsta.2004.1544.[Crossref]
  • 70. Catlow, C.R.A., French, S.A., Sokol, A.A. & Thomas, J.M. (2005). Computational approaches to the determination of active site structures and reaction mechanisms in heterogeneous catalysts, Phil. Trans. R. Soc. A, 363, 913–936. DOI:10.1098/rsta.2004.1529.[Crossref]
  • 71. Sun, M., Zhang, J., Putaj, P., Caps, V., Lefebvre, F., Pelletier, J. & Basset, J.M. (2013). Catalytic Oxidation of Light Alkanes (C1–C4) by Heteropoly Compounds, Chem. Rev. 2014, 114, 981–1019. DOI.org/10.1021/cr300302b.
  • 72. Kao, L.C., Hutson, A.C. & Sen, A. (1991). Low-Temperature, Palladium(I1)-Catalyzed, Solution-Phase Oxidation of Methane to a Methanol Derivative, J. Am. Chem. Soc. 113, 2, 700–701 DOI: 10.1021/ja00002a063.[Crossref]
  • 73. Taylor, Ch.E., Anderson, R.R. & Noceti, R.P. (1997). Activation of methane with organopalladium complexes, Catalysis Today, 35, 4, 407–413. DOI: 10.1016/S0920-5861(96)00213-1.[Crossref]
  • 74. Michalkiewicz, B. (2003). Methane Conversion to Methanol in Condensed Phase, Kinet. Catal., 44, 6, 801–805. DOI: 10.1023/B:KICA.0000009057.79026.0b.[Crossref]
  • 75. Michalkiewicz, B. & Kałucki, K. (2003). The Role of Pressure in the Partial Methane Oxidation Process in the Pd-Oleum Environment, Chem. Pap., 57, 6, 393–396.
  • 76. Michalkiewicz, B. (2006). Methane esterification in oleum, Chem. Pap., 602, 5, 371–374. DOI: 10.2478/s11696-006-0067-z.[Crossref]
  • 77. Michalkiewicz, B., Ziebro, J. & Tomaszewska, M. (2006). Preliminary investigation of low pressure membrane distillation of methyl bisulphate from its solutions in fuming sulphuric acid combined with hydrolysis to methanol, J. Membrane Sci., 286, 1–2, 223–227. DOI: 10.1016/j.memsci.2006.09.039.[Crossref]
  • 78. Periana, R.A., Mironov, O., Taube, D.J., Bhalla, G. & Jones, C.J. (2003). Catalytic, Oxidative Condensation of CH4 to CH3COOH in One Step via CH Activation, Science, 301, 5634, 814–818. DOI: 10.1126/science.1086466.[Crossref]
  • 79. Michalkiewicz, B. (2006). The kinetics of homogeneous catalytic methane oxidation, Appl. Catal. A, 307, 2, 270–274. DOI: 10.1016/j.apcata.2006.04.006.[Crossref]
  • 80. Michalkiewicz, B. & Kosowski, P. (2007). The selective catalytic oxidation of methane to methyl bisulfate at ambient pressure, Catal. Commun.,8, 12, 1939–1942. DOI: 10.1016/j.catcom.2007.03.014.[Crossref]
  • 81. Gang, X., Zhu, Y., Birch, H., Aage, H., Hjuler, A. & Bjerrum, N. (2004). Iodine as catalyst for the direct oxidation of methane to methyl sulfates in oleum, Appl. Catal. A., 261, 1, 91–98. DOI: 10.1016/j.apcata.2003.10.039.[Crossref]
  • 82. Periana, R.A., Mironov, O., Taube, D.J., Bhalla, G., Gamble, S. (2002). High Yield Conversion of Methane to Methyl bisulfate Catalyzed by Iodine Cations, Chem. Commun., 2376–2377. DOI: 10.1039/B205366G.[Crossref]
  • 83. Zerella, M., Bell, A.T. (2006). Pt-catalyzed oxidative carbonylation of methane to acetic acid in sulfuric acid, Journal of Molecular Catalysis, 259, 1–2, 296–301. DOI: 10.1016/j.molcata.2006.06.059.[Crossref]
  • 84. Michalkiewicz, B., Jarosińska, M. & Łukasiewicz, I. (2009). Kinetic study on catalytic methane esterification in oleum catalyzed by iodine, Chem. Engineer. J., 154, 1–3, 156–161. DOI: 10.1016/j.cej.2009.03.046.[Crossref]
  • 85. Michalkiewicz, B. (2011) Methane oxidation to methylbisulfate in oleum at ambient pressure in the presence of iodine as a catalyst, Appl. Catal. A., 394, 1–2, 266–268. DOI: 10.1016/j.apcata.2011.01.014.[Crossref]
  • 86. Vargaftik, M.N., Stolarov, I.P. & Moiseev, I.L. (1990). Highly selective partial oxidation of methane to methyl trifluoroacetate, J. Chem. Soc., Chem. Commun., 1049–1050 DOI: 10.1039/C39900001049.[Crossref]
  • 87. Yamanaka, I., Soma, M. & Otsuka, K. (1995). Oxidation of methane to methanol with oxygen catalyzed by europium trichloride at room-temperature, J.Chem. Soc., Chem. Commun., 2235–2236. DOI: 10.1039/C39950002235.[Crossref]
  • 88. Yamanaka, I., Soma, M. & Otsuka, K. (1996). Enhancing effect of titanium (II) for the oxidation of methane with O – 2 by an EuCL3 – Zn –CF3CO2H – catalytic system at 40°, Chem. Lett., 565. DOI: 10.1246/cl.1996.565.
  • 89. Mukhopadhyay, S. & Bell, A. (2004). Direct sulfonation of methane to methanesulfonic acid by sulfur trioxide catalyzed by cerium(IV) sulfate in the presence of molecular oxygen, Advanced Synthesis & Catalysis, 348, 913–916. DOI: 10.1002/adsc.200404060.[Crossref]
  • 90. Mukhopadhyay, S. & Bell, A. (2003). Direct liquid-phase sulfonation of methane to methanesulfonic acid by SO3 in the presence of a metal peroxide, Angew. Chem. Internat. Edition, 42, 9, 1019–1021. DOI: 10.1002/anie.200390260.[Crossref]
  • 91. Mukhopadhyay, S. & Bell, A. (2003) Direct sulfonation of methane at low pressure to methanesulfonic acid in the presence of potassium peroxydiphosphate as the initiator, Organic Process Research & Development, 7, 2, 161–163, DOI: 10.1021/op020079n.[Crossref]
  • 92. Jones, C.J., Taube, D., Periana, R.A., Nielsen, R.J., Oxgaard, J. & Goddard, W.A. (2004). Selective oxidation of methane to methanol catalyzed, with C-H activation, by homogeneous, cationic gold, Angewandte Chemie, International Edition, 116, 35, 4626–4629. DOI: 10.1002/ange.200461055.[Crossref]
  • 93. Lobree, L.J. & Bell, A.T. (2001). K2S2O8-initiated sulfonation of methane to methanesulfonic acid, Ind. Eng. Chem. Res., 40, 3, 736–742. DOI: 10.1021/ie000725b.[Crossref]
  • 94. Periana, R.A., Hashiguchi, B.G., Konnick, M., Bischof, S.M., Gustafson, S.J. Devarajan, D., Gunsalus, N. & Ess, D.H. (2014). Main group compounds selectively oxidize mixtures of methane, ethane, and propane to alcohol esters, Science, 343, 6176, 1232–1237. DOI: 10.1126/science.1249357.[Crossref]
  • 95. Wang, K.X., Xu, H.F., Li, W.S., Au, C.T. & Zhou, X.P. (2006). The synthesis of acetic acid from methane via oxidative bromination, carbonylation, and hydrolysis, Applied Catalysis A, 304, 10, 168–177. DOI: 10.1016/j.apcata.2006.02.035.[Crossref]
  • 96. Fengbo, L., Guoqing, Y., Fang, Y. & Fengwen, Y. (2008). Bromine-mediated conversion of methane to C1 oxygenates over Zn-MCM-41 supported mercuric oxide, Appl. Catal. A: General 335, 1, 82–87. DOI: 10.1016/j.apcata.2007.11.014.[Crossref]
  • 97. Chan, S.I., Nagababu, P., Yu, S.S.F., Maji, S. & Ramu, R. (2014). Developing an efficient catalyst for controlled oxidation of small alkanes under ambient conditions, Catal. Sci. Technol., 4, 930–935. DOI: 10.1039/C3CY00884C.[Crossref]
  • 98. Jarosińska, M., Lubkowski, K., Sośnicki, J.G., Michalkiewicz, B. (2008). Application of halogens as catalysts of CH4 esterification, Catal. Lett., 126, 3–4, 407–412. DOI: 0.1007/s10562-008-9645-8.
  • 99. Michalkiewicz, B. & Balcer, S. (2012). Bromine catalyst for the methane to methyl bisulfate reaction, Pol. J. Chem. Technol., 14, 4, 19–21. DOI: 10.2478/v10026-012-0096-z.[Crossref]
  • 100. Couderc, R. & Baratti, J. (1980). Oxidations of hydrocarbons by methane by the yeast Pichia pastoris. Purification and properties of the alcohol oxidase, Adv. Appl. Microbiol., 44, 2279–2289.
  • 101. Droege, M.W., Satcher, J.H., Reibold, R.A., Weakely’, T.J.R., Chauffe, L. & Watkins, B.E. (1992). Application of coordinating Complexes containing an asymmetric coordinating ligand, 1534.
  • 102. Woodland, M.P. & Dalton, H.J. (1984). Purification and characterization of component A of the methane monooxygenase from Methylococcus capsulatus (Bath), Biol. Chem., 259, 53–59.
  • 103. Green, J. & Dalton, H.J. (1985). Protein B of soluble methane monooxygenase from Methylococcus capsulatus (Bath). A novel regulatory protein of enzyme activity, Biol. Chem., 260, 29, 15795–15801.
  • 104. Woodland, M.P., Patil, D.S., Cammack, R. & Dalton, H. (1986). ESR Studies of protein A of the soluble methane monooxygenase from Methylococcus capsulatus (Bath), Biochim. Biophys. Acta, 873, 237–242.
  • 105. Fox, B.G., Surerus, K.K., Munck, E. & Lipscomb, J.D.J. (1988). Evidence for a mu-oxo-bridged binuclear iron cluster in the hydroxylase component of methane monooxygenase Mössbauer and EPR studies, J. Biol. Chem., 263, 10553–10556.
  • 106. Prince, R.C., George, G.N., Savas, J.C., Cramer, S.P., Patel, R.N. (1988). Spectroscopic properties of the hydroxylase of methane monooxygenase, Biochim. Biophys. Acta, 952, 220–229.
  • 107. DeWitt, J.G., Benhen, J.G., Rosenzweig, A.C., Hedman, B., Green, J., Pilkington, S., Papaefthymiou, G.C., Dalton, H., Hodgson, K.O. & Lippard, S.J.J. (1992). Biomimetic catalysts application of coordinating complexes containing an asymmetric coordinating ligand, Am. Chem. Soc., 113, 9219–9235.
  • 108. Fox, B.G., Froland, W.A., Dege, J.E. & Lipscomb, J.D.J. (1989). Methane monooxygenase from Methylosinus trichosporium OB3b. Purification and properties of a three-component system with a high specific activity from a type II methanotrophs, Biol. Chem., 264, 10023–10033.
  • 109. Merkx, M., Kopp, D.A., Sazinsky, M.H., Blazyk, J.L., Muller, J. & Lippard, S.J. (2001). Dioxygen Activation and Methane Hydroxylation by Soluble Methane Monooxygenase: A Tale of Two Irons and Three Proteins A list of abbreviations can be found in Section 7, Angew.Chem., Int. Ed., 40, 2782–2807. DOI: 10.1002/1521-3773(20010803)40:153.3.CO;2-G.[Crossref]
  • 110. Markowska, A. & Michalkiewicz, B. (2009). Biosynthesis of methanol from methane by Methylosinus trichosporium OB3, Chemical Papers, 63, 2, 105–110. DOI: 10.2478/s11696-008-0100-5.[Crossref]
  • 111. Vanelderen, P., Hadt, R.G., Smeets, P.J., Solomon,, E.I., Schoonheydt R.A. & Sels, B.F. (2011). Cu-ZSM-5: A biomimetic inorganic model for methane oxidation, J. Catal., 284, 2, 157–164. DOI: 10.1016/j.jcat.2011.10.009.
  • 112. Chan, S.I., Lu, Y.J., Nagababu, P., Maji, S., Hung, M.Ch., Lee, M.M., Hsu, I.J., Minh, P.D., Lai, J.C.H., Kok, Y.N., Sridevi, R., Steve, S.F. Yu, Michael K. Chan. (2013). Efficient oxidation of methane to methanol by dioxygen mediated by tricopper clusters, Angew. Chem.Int. Ed., 52, 3731–3735. DOI: 10.1002/anie.201209846.[Crossref]
  • 113. Shilov, A.E. & Shteinman, A.A. (2012). Methane hydroxylation: a biomimetic approach, Russ. Chem.Rev., 81, 4, 291. DOI: 10.1070/RC2012v081n04ABEH004271.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_pjct-2015-0050
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.