Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 17 | 3 | 33-39

Article title

Influence of nanocrystalline structure and surface properties of TiO2 thin films on the viability of L929 cells

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this work the physicochemical and biological properties of nanocrystalline TiO2 thin films were investigated. Thin films were prepared by magnetron sputtering method. Their properties were examined by X-ray diffraction, photoelectron spectroscopy, atomic force microscopy, optical transmission method and optical profiler. Moreover, surface wettability and scratch resistance were determined. It was found that as-deposited coatings were nanocrystalline and had TiO2-anatase structure, built from crystallites in size of 24 nm. The surface of the films was homogenous, composed of closely packed grains and hydrophilic. Due to nanocrystalline structure thin films exhibited good scratch resistance. The results were correlated to the biological activity (in vitro) of thin films. Morphological changes of mouse fibroblasts (L929 cell line) after contact with the surface of TiO2 films were evaluated with the use of a contrast-phase microscope, while their viability was tested by MTT colorimetric assay. The viability of cell line upon contact with the surface of nanocrystalline TiO2 film was comparable to the control sample. L929 cells had homogenous cytoplasm and were forming a confluent monofilm, while lysis and inhibition of cell growth was not observed. Moreover, the viability in contact with surface of examined films was high. This confirms non-cytotoxic effect of TiO2 film surface on mouse fibroblasts.

Publisher

Year

Volume

17

Issue

3

Pages

33-39

Physical description

Dates

published
1 - 9 - 2015
online
19 - 9 - 2015

Contributors

  • Wroclaw Medical University, Department for Experimental Surgery and Biomaterials Research, Poland
  • Wroclaw Medical University, Department for Experimental Surgery and Biomaterials Research, Poland
  • Wroclaw University of Technology, Faculty of Microsystem Electronics and Photonics, Wroclaw, Poland
author
  • Wroclaw University of Technology, Faculty of Microsystem Electronics and Photonics, Wroclaw, Poland
  • Wroclaw University of Technology, Faculty of Microsystem Electronics and Photonics, Wroclaw, Poland
  • Wroclaw University of Technology, Faculty of Microsystem Electronics and Photonics, Wroclaw, Poland
  • Wroclaw Medical University, Department for Experimental Surgery and Biomaterials Research, Poland
  • Wroclaw Medical University, Department for Experimental Surgery and Biomaterials Research, Poland

References

  • 1. Branemark, P.I., Breine, U., Adell, R., Hansson, B., Lindström, J. & Ohlsson, A. (1969). Intra-osseous anchorage of dental prostheses. I. Experimentalstudies. Scand J Plast Reconstr Surg. 3, 81–100. DOI: 10.3109/02844316909036699.[Crossref]
  • 2. Hanawa, T. (1991). Calcium phosphate naturally formed on titanium in electrolyte solution. Biomaterials 12, 767–774. DOI: 10.1016/0142-9612(91)90028-9.[Crossref]
  • 3. Brunette, D.M., Tengvall, P., Textor, M. & Thomsen, P. (2001). Titanium in medicine. DOI: 10.1007/978-3-642-56486-4.[Crossref]
  • 4. Choubey, A., Balasubramaniam, R. & Basu, B. (2004). Effect of replacement of V by Nb and Fe on the electrochemical and corrosion behavior of Ti-6Al-4V in simulated physiological environment. J. All. Comp. 381, 288–294. DOI: 10.1016/j.jallcom.2004.03.096.
  • 5. Azevedo, C.R.F. (2003). Failure analysis of a commercially pure titanium plate for osteosynthesis. Engine. Fail. Anal. 10, 153–164. DOI:10.1016/S1350-6307(02)00067-5.[Crossref]
  • 6. Eisenbarth E., Valten D., Mullee M., Thull R. & Breme J. (2004). Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials 25, 5705–5713. DOI:10.1016/j.biomaterials.2004.01.021.[Crossref]
  • 7. Zitter, H. & Plenk, H.J. (1987). The electrochemical behavior of metallic implant materials as an indicator of their biocompatibility. J. Biomed Mater. Res. 21, 881–896. DOI: 10.1002/jbm.820210705.[Crossref]
  • 8. Cui, W.F., Jin, L. & Zhou, L. (2013). Surface characteristics and electrochemical corrosion behavior of a pre-anodized microarc oxidation coating on titanium alloy. Materi. Sci. Engine.: C 33(7), 3775–3779. DOI: 10.1016/j.msec.2013.05.011.[Crossref]
  • 9. Taubert, A., Mano, J.F., Rodríguez-Cabello, J.C. (2013). Biomater. Surf. Sci. DOI: 10.1002/9783527649600.[Crossref]
  • 10. Yamauchi, R., Morita, A. & Tsuji, T. (2000). Pacemaker dermatitis from titanium. Cont. Dermat. 42, 52–53. PMID: 10644034.
  • 11. Thomas, P., Bandl, W.D., Thomas, P., Bandl, W., Maier, S., Summer, B. & Przybilla, B. (2006). Hypersensitivity to titanium osteosynthesis with impaired fracture healing, eczema, and T-cell hyperresponsiveness in vitro: case report and review of the literature. Contact Dermatitis 55, 199–202. DOI: 10.1111/j.1600-0536.2006.00931.x.[Crossref]
  • 12. Verbov, J. (1985). Pacemaker contact sensitivity. Cont. Dermat. 12, 173. DOI: 10.1111/j.1600-0536.1985.tb01089.x.[Crossref]
  • 13. Brun, R. & Hunziker, N. (1980). Pacemaker dermatitis. Cont. Dermat. 6, 212–213. DOI: 10.1111/j.1600-0536.1992.tb00867.x.[Crossref]
  • 14. Viraben, R., Boulingues, S. & Alba, C. (1995). Granulomatous dermatitis after implantation of a titanium containing pacemaker. Cont. Dermat. 33, 437. DOI: 10.1111/j.1600-0536.1995.tb02089.x.[Crossref]
  • 15. Yamauchi, R., Morita, A. & Tsuji, T. (2000). Pacemarker dermatitis from titanium. Cont. Dermat. 42, 52–53.
  • 16. Schuh, A., Thomas, P., Kachler, W., Göske, J., Wagner, L., Holzwarth, U. & Forst, R. (2005). Allergic potential of titanium implants. Orthopade 34, 327–333. DOI: 10.1007/s00132-005-0764-2.[Crossref]
  • 17. Suohonen, R. & Kanerva, L. (2001). Allergic contact dermatitis caused by palladium on titanium spectacle frames. Cont. Dermat. 45, 244–245. DOI: 10.1034/j.1600-0536.2001.440409-13.x.[Crossref]
  • 18. Kaczmarek, D., Domaradzki, J., Wojcieszak, D., Prociów, E., Mazur, M., Placido, F. & Lapp, S. (2012). Hardness of nanocrystalline TiO2 thin films, J. Nano Res. 18/19, 195–200. DOI: .[Crossref]
  • 19. Domaradzki, J., Kaczmarek, D., Prociow, E., Borkowska, A., Schmeisser, D. & Beuckert, G. (2006). Microstructure and optical properties of TiO2 thin films prepared by low pressure hot target reactive magnetron sputtering. Thin Sol. Films 513, 269–274. DOI: 10.1016/j.tsf.2006.01.049.[Crossref]
  • 20. Mazur, M., Wojcieszak, D., Kaczmarek, D., Domaradzki, J., Zatryb, G., Misiewicz, J. & Morigiel, J. (2015). Effect of the nanocrystalline structure type on the optical properties of TiO2:Nd (1 at. %) thin films. Opt. Mater. DOI: .[Crossref]
  • 21. Kwok, D.Y. & Neumann, A.W. (1999). Contact angle measurement and contact angle interpretation. Adv. Coll. Interfac. 81, 167–249. DOI: .[Crossref]
  • 22. Sharfrin, E. & Zisman, W.A. (1960). Constitutive relations in the wetting of low energy surfaces and the theory of the retraction method of preparing monolayers. J. Phys. Chem. 64, 519–524. DOI: 10.1021/j100834a002.[Crossref]
  • 23. ISO/TC 172/SC 7/WG 3N30 Standard. (1998). Spectacle Lenses: Test Method for Abrasion Resistance.
  • 24. Blacker, R., Bohling, D., Coda, M. & Kolosey, M. (2000). Development of intrinsically conductive antireflection coatings for the ophthalmic industry, 43rd Annual Technical Conference Proceedings, 15–20 April 2000. Society of Vacuum Coaters, (pp. 212–216). Denver, Colorado, USA.
  • 25. I.S. EN ISO 10993-5 Standard. (2009). Biological evaluation of medical devices: Part 5: Tests for in vitro cytotoxicity.
  • 26. Ciapetti, G., Cenni, E., Pratelli, L. & Pizzoferrato, A. (1993): In vitro evaluation of cell/biomaterial interaction by MTT assay. Biomaterials 14(5),359–64. DOI: .[Crossref]
  • 27. Denizot, F. & Lang, R. (1986). Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Meth. 89(2), 271–277. DOI:10.1016/0022-1759(86)90368-6.[Crossref]
  • 28. Garrelds, I.M., Zijstra, F.J., Tak, J.A., Bonta, I.L., Beckmann, I. & Efraim, B. (2005). A comparison between two methods for measuring tumor necrosis factor in biological fluids. Inflam. Res. C. 89–91. DOI: 10.1007/BF01991147.[Crossref]
  • 29. Heravi, F., Ramezani, M., Poosti, M., Hosseini, M., Shajiei, A. & Ahrari, F. (2013). In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles. J. Dent. Res. Dent. Clin. Dent. Prospect. 7(4): 192–198. DOI: 10.5681/joddd.2013.031.[Crossref]
  • 30. Malkoc, S., Corekci, B., Ulker, H.E., Yalcin, M. & Sengun, A. (2010). Cytotoxic effects of orthodontic composites. Angle Orthod. 80, 571-6. DOI: 10.2319/092809-537.1.[WoS][Crossref]
  • 31. Powder Diffraction File, Joint Committee on Powder Diffraction Standards. (1967). ASTM, Philadelphia, PA, Card 21-1272 – PDF.
  • 32. Finetti, P., Caffio, M., Cortigiani, B., Atrei, A. & Rovida, G. (2008). Mechanism of growth and structure of titanium oxide ultrathin films deposited on Cu(001). Surf. Sci. Vol. 602, p. 1101–1113. DOI:10.1016/j.susc.2008.01.016.[Crossref]
  • 33. Chastain, J. (Ed.). (1992). Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer, Eden Prairie MN.
  • 34. Mayer, J.T., Diebold, U., Madey, T.E. & Garfunkel, E. (1995). Titanium and reduced titania overlayers on titanium dioxide (101). J. Electr. Spectrosc. Relat. Phenom. Vol. 73, 1–11. DOI: 10.1016/0368-2048(94)02258-5.[Crossref]
  • 35. Moulder, J., Stickle, W., Sobol, P. & Bomben, K. (1995). Handbook of X-ray Photoelectron Spectroscopy. Physical Electronics Inc. United States of America. ISBN 0-9648124-1-X.
  • 36. Mazur, M., Domaradzki, J., Wojcieszak, D., Kaczmarek, D. & Mazur P. (2014). Investigation of physicochemical properties of (Ti-V)Ox (4.3 at.% of V) functional thin films and their possible application in the field of transparent electronics. Appl. Surf. Sci. 304, 73–80. DOI: .[Crossref][WoS]
  • 37. Chang H. & Wang Y. (2011). Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds, regenerative Medicine and Tissue Engineering - Cells and Biomaterials. ISBN 978-953-307-663-8. DOI: 10.5772/21983.[Crossref]
  • 38. Affrossman, S., Henn, G., O’Neill, S.A. & Pethrick, R.A., Stamm M. (1996). Surface topography and composition of deuterated polystyrene-poly(bromostyrene) blends, Macromolecules 29, 5010–5016. DOI: 10.1021/ma9516910.[Crossref]
  • 39. Dalby, M.J., Giannaras, D., Riehle, M.O., Gadegaard, N., Affrossman, S. & Curtis, A.S.G. (2004). Rapid fibroblast adhesion to 27nm high polimer demixed nano-topography. Biomaterials 25, 77–83. DOI: 10.1016/S0142-9612(03)00475-7.[Crossref]
  • 40. Wachesk, C.C., Pires, C.A.F., Ramos, B.C., Trava-Airoldi, V.J., Lobo, A.O., Pacheco-Soares, C., Marciano, F.R. & Da-Silva, N.S. (2013). Cell viability and adhesion on diamond-like carbon films containing titanium dioxide nanoparticles. Appl. Surf. Sci. 266, 176–181. DOI: 10.1016/j.apsusc.2012.11.124.[Crossref]
  • 41. Scheers, M.E., Ekwall, B. & Dierickx, J.P. (2001). In vitro long-term cytotoxicity testing of 27 MEIC chemicals on HepG2 cells and comparison with acute human toxicity data. Toxicol. In Vitro 15, 153–161. DOI:10.1016/j.toxlet.2005.07.001.[Crossref]
  • 42. George, F. & Timbrell, A. (2006). In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicology Letters 160, 171–177F. DOI: 10.1371/journal.pone.0026908.[Crossref]
  • 43. Liua, S., Xua, L., Zhangb, T., Renc, G. & Yanga, Z. (2010). Oxidative stress and apoptosis induced by nanosized titanium dioxide in PC12 cells. Toxicology 267, 172–177. DOI: 10.1016/j.tox.2009.11.012.
  • 44. Gurr, J.R., Wang, A.S., Chen, C.H., Jan, K.Y. (2005). Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213, 66–73. DOI: 10.1016/j.tox.2005.05.007.[Crossref]
  • 45. Horie, M., Nishio, K., Fujita, K., Kato, H., Endoh, S., Suzuki, M., Nakamura, A., Miyauchi, A., Kinugasa, S., Yamamoto, K., Iwahashi, H., Murayama, H., Niki, E. & Yoshida, Y. (2010). Cellular responses by stable and uniform ultrafine titanium dioxide particles in culture-medium dispersions when secondary particle size was 100 nm or less. Toxicology in Vitro 24, 1629–1638. DOI:10.1016/j.tiv.2010.06.003.[WoS][Crossref]
  • 46. Park, S., Lee, Y.K., Jung, M., Kim, K.H., Chung, N., Ahn, E.K., Lim, Y., Lee, K.H. (2007). Cellular toxicity of various inhalable metal nanoparticles on human alveolar epithelial cells. InhalToxicol 19 (Suppl. 1), 59–65. DOI: 10.1080/08958370701493282.[WoS][Crossref]
  • 47. Sayes, C.M., Wahi, R., Kurian, P.A., Liu, Y., West, J.L., Ausman, K.D., Warheit, D.B. & Colvin, V.L. (2006). Correlating nanoscaletitania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. ToxicolSci. 92, 174–185. DOI: 10.1093/toxsci/kfj197.[Crossref]
  • 48. Braydich-Stolle, L.K., Schaeublin, N.M., Murdock, R.C., Jiang, J., Biswas, P., Schlager, J.J. & Hussain, M.S. (2008). Crystal structure mediates mode of cell death in TiO2 nanotoxicity. An Interdisciplinary Forum for Nanoscale Science and Technology. J. Nanopart. Res. DOI: 10.1007/s11051-008-9523-8.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_pjct-2015-0047
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.