Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 17 | 2 | 126-130

Article title

Kinetics of electrooxidation of phenol on polycrystalline platinum

Content

Title variants

Languages of publication

EN

Abstracts

EN
This work reports on kinetics of phenol electrooxidation reaction (PhER), examined at polycrystalline Pt electrode in 0.5 M H2SO4 and 0.1 M NaOH supporting solutions. Important aspects of PhER kinetics were analysed based on potential-dependent, a.c. impedance-derived values of charge-transfer resistance and capacitance parameters. Special attention was also given to the influence of supporting electrolyte ions on the process of phenol oxidation (pH dependence of the PhER), in relation to an important role of anion adsorption on the Pt catalyst surface.

Publisher

Year

Volume

17

Issue

2

Pages

126-130

Physical description

Dates

published
1 - 6 - 2015
online
9 - 6 - 2015

Contributors

  • University of Warmia and Mazury in Olsztyn, Department of Chemistry, Faculty of Environmental Management and Agriculture, Plac Łódzki 4, 10-957 Olsztyn, Poland
  • University of Warmia and Mazury in Olsztyn, Department of Chemistry, Faculty of Environmental Management and Agriculture, Plac Łódzki 4, 10-957 Olsztyn, Poland
  • University of Warmia and Mazury in Olsztyn, Department of Chemistry, Faculty of Environmental Management and Agriculture, Plac Łódzki 4, 10-957 Olsztyn, Poland

References

  • 1. Torres, R.A., Torres, W., Peringer, P. & Pulgarin, C. (2003). Electrochemical degradation of p-substituted phenols of industrial interest on Pt electrodes. Attempt of a structurereactivity relationship assessment. Chemosphere 50, 97-104. DOI: 10.1016/S0045-6535(02)00487-3.[Crossref]
  • 2. Rajkumar, D. & Palanivelu, K. (2004). Electrochemical treatment of industrial wastewater. J. Hazard. Mater. B113, 123-129. DOI: 10.1016/j.jhazmat.2004.05.039.[Crossref]
  • 3. Pirvu, C., Banu, A., Radovici, O. & Marcu, M. (2008). Application of electrochemical impedance spectroscopy (EIS) to study of phenolic fi lms. Rev. Roum. Chim. 53(11), 1007-1015.
  • 4. Lv, G., Wu, D. & Fu, R. (2009). Performance of carbon aerogels particle electrodes for the aqueous phase electro-catalytic oxidation of simulated phenol wastewaters. J. Hazard. Mater. 165, 961-966. DOI: 10.1016/j.jhazmat.2008.10.090.[WoS][Crossref]
  • 5. Yang, X., Kirsch, J., Fergus, J. & Simonian, A. (2013). Modeling analysis of electrode fouling during electrolysis of phenolic compounds. Electrochim. Acta 94, 259-268. DOI: 10.1016/j.electacta.2013.01.019.[WoS][Crossref]
  • 6. Li, X., Cui, Y., Feng, Y., Xie, Z. & Gu, J. (2005). Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Res. 39, 1972-1981. DOI: 10.1016/j.watres.2005.02.021.[Crossref]
  • 7. Ma, H., Zhang, X., Ma, Q. & Wang, B. (2009). Electrochemical catalytic treatment of phenol wastewater. J. Hazard. Mater. 165, 475-480. DOI: 10.1016/j.jhazmat.2008.10.012.[Crossref]
  • 8. Li, M., Feng, C., Hu, W., Zhang, Z. & Sugiura, N. (2009). Electrochemical degradation of phenol using electrodes of Ti/ RuO2-Pt and Ti/IrO2-Pt. J. Hazard. Mater. 162, 455-462. DOI: 10.1016/j.jhazmat.2008.05.063.[Crossref]
  • 9. Zhang, C., Jiang, Y., Li, Y., Hu, Z., Zhou, L. & Zhou, M. (2013).Three-dimensional electrochemical process for wastewater treatment: A general review. Chem. Eng. J. 228, 455-467. DOI: 10.1016/j.cej.2013.05.033.[Crossref]
  • 10. Enache, T.A. & Brett, A.M.O. (2011). Phenol and parasubstituted phenols electrochemical oxidation pathways. J. Electroanal. Chem. 655, 9-16. DOI: 10.1016/j.jelechem.2011.02.022.[Crossref]
  • 11. Pierozynski, B. (2012). Kinetic aspects of ethanol electrooxidation on catalytic surfaces of Pt in 0.5 M H2SO4. Int. J. Electrochem. Sci. 7, 3327-3338.
  • 12. Macdonald, J.R. (1987). Impedance spectroscopy, emphasizing solid materials and systems. New York: John Wiley & Sons.
  • 13. Pajkossy, T. (1994). Impedance of rough capacitive electrodes. J. Electroanal. Chem. 364, 111-125. DOI: 10.1016/0022-0728(93)02949-I.[Crossref]
  • 14. Conway, B.E. (2005). Impedance Spectroscopy. Theory, Experiment, and Applications, Barsoukov, E. & Macdonald, J.R. (Eds.), Wiley-Interscience, John Wiley & Sons, Inc., Hoboken, N.J. 4.5.3.8, 494.
  • 15. Pell, W.G., Zolfaghari, A. & Conway, B.E. (2002). Capacitance of the double-layer at polycrystalline Pt electrodes bearing a surface-oxide fi lm. J. Electroanal. Chem. 532, 13-23. DOI: 10.1016/S0022-0728(02)00676-9.[Crossref]
  • 16. Lasia, A. & Rami, A. (1992). Kinetics of hydrogen evolution on Ni-Al alloy electrodes. J. Appl. Electrochem. 22, 376-382. DOI: 10.1007/BF01092692s.[Crossref]
  • 17. Chen, L. & Lasia, A. (1991). Study of the kinetics of hydrogen evolution reaction on nickel-zinc alloy electrodes. J. Electrochem. Soc. 138(11), 3321-3328. DOI: 10.1149/1.2085409. [Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_pjct-2015-0040
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.