Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 17 | 2 | 17-22

Article title

Hydrogen peroxide as a biodegradation stimulator in remediation processes of soils heavily contaminated with petrochemicals

Content

Title variants

Languages of publication

EN

Abstracts

EN
The soil contaminated with petroleum products must be excluded from the crops and treated to reclamation processes. Natural processes of decomposition of hydrocarbon compounds go very slow, so it is necessary to use bioaugumentation or stimulation in order to accelerate the return of the soil to high culture. In this study the effect of hydrogen peroxide on the process of cleaning soil strongly contaminated with pertochemicals was investigated. For this purpose, a pot experiment lasting 60 days was carried. The dynamics of changes in the population of filamentous fungi, yeasts and bacteria were examined and also content of aliphatic hydrocarbons (n-alkanes), monoaromatic and polycyclic aromatic hydrocarbons (PAHs). Experimental use of hydrogen peroxide in the process of biodegradation of petroleum compounds assisted in the analyzed soil led to an increase of the number of grampositive bacteria during the test. Stimulation of oil products biodegradation by hydrogen peroxide also increased by 35% decomposition efficiency of aliphatic hydrocarbons (C8-C40) and about 50% PAH’s in comparison to control samples without hydrogen peroxide. There was no influence of hydrogen peroxide on the content of monoaromatic hydrocarbons (BTEX) with respect to controls, although in the end of experiment, the total concentration decreased by about 50% compared to the initial content.

Publisher

Year

Volume

17

Issue

2

Pages

17-22

Physical description

Dates

published
1 - 6 - 2015
online
9 - 6 - 2015

Contributors

  • Institute of Environmental Engineering of the Polish Academy of Sciences, Zabrze, Poland
  • University of Opole, Department of Biotechnology and Molecular Biology, Kominka Str. 6a, 45-035 Opole, Poland
  • University of Opole, Department of Land Protection, Oleska Str 22, 45-052 Opole, Poland
  • University of Opole, Department of Biotechnology and Molecular Biology, Kominka Str. 6a, 45-035 Opole, Poland

References

  • 1. Kluk, D. (2010). Petroleum substances biodegradeability rate test of drilling waste. Oil and Gas. 1, 27-33 (in Polish)
  • 2. Łebkowska, M., Karwowska, E. & Miaśkiewicz, E. (1995). Isolation and identification of bacteria from petroleum derivatives contaminated soil. Acta Microbiol. Pol. 44, 3-4, 297-303
  • 3. Łebkowska, M., Zborowska, E., Karwowska, E., Muszynski, A., Tabernacka, A., Naumczyk, J. & Jeczalik, M. (2011). Bioremediation of soil polluted with fuels by sequential multiple injection of native microorganisms: Field-scale processes in Poland. Ecol. Eng. 37, 11, 1895-1900, DOI: 10.1016/j.ecoleng.2011.06.047.[Crossref][WoS]
  • 4. Menendez-Vega, D., Gallego, J.L.R., Pelaez, A.I., Fernandez de Cordoba, G., Moreno, J., Munoz, D. & Sanchez, J. (2010). Engineered in situ bioremediation of soil and groundwater polluted with weathered hydrocarbons. Eur. J. Soil. Biol. 43, 5-6, 310-321, DOI: 10.1016/j.ejsobi.2007.03.005.[WoS][Crossref]
  • 5. Steliga, T. (2008). Optimization of biodegradation process of petroleum pollution in weathered wastes from mud pits. Min. Res. Man. 24 (1/1), 87-112. (in Polish).
  • 6. Guo, H., Yao, J., Cai, M., Qian, Y., Guo, Y., Richnow, H.H., Blake, R.E., Doni, S. & Ceccanti, B. (2012). Effects of petroleum contamination on soil microbial numbers, metabolic activity and urease activity. Chemosphere 87, 11, 1273-1280 DOI: 10.1016/j.chemosphere.2012.01.034.[Crossref][WoS]
  • 7. Steliga, T., Kapusta, P. & Jakubowicz, P. (2007). Ex situ bioremediation of soil from classic gasworks area polluted with petroleum hydrocarbons. Drilling. Oil. Gas. 24, 1, 475-485. (in Polish).
  • 8. Du, W., Wan, Y., Zhong, N., Fei, J., Zhang, Z., Chen, L. & Hao, J. (2011). Status quo of soil petroleum contamination and evolution of bioremediation. Pet. Sci. 8, 502-514.[WoS]
  • 9. Guzik, U., Wojcieszyńska, D., Krysiak, M. & Kaczorek, E. (2010) Mikrobiological degradation of petroleum alkanes. Oil and Gas. 11, 1019-1027 (in Polish).
  • 10. Kang, N. & Hua, I. (2005). Enhanced chemical oxidation of aromatic hydrocarbons in soil systems. Chemosphere. 61, 7, 909-22, DOI: 10.1016/j.chemosphere.2005.03.039.[Crossref]
  • 11. Lewkiewicz-Małysa, A. & Winid, B. (2010). Reduction of hydrocarbon contaminations with the use of chemical methods. Drilling. Oil. Gas. 27, 1-2, 241-249 (in Polish).
  • 12. Watts, RJ., Stanton, PC., Howsawkeng, J. & Teel, A.L. (2002). Mineralization of a sorbed polycyclic aromatic hydrocarbon in two soils using catalyzed hydrogen peroxide. Water. Res. 36, 17, 4283-4292, DOI: 10.1016/S0043-1354(02)00142-2.[Crossref]
  • 13. Kołwzan, B. (2009). Removal of petroleum products from soil by the prism method. Environ. Poll. Contr. 31, 2, 3-9 (in Polish).
  • 14. Malicka, (1994). Biotechnological cleaning methods of soil contaminated by petroleum compounds and other toxic organics. Gas, Water and Sanit. Engineer. 2, 40-46 (in Polish).
  • 15. Jung, H., Ahn, Y., Choi, H. & Kim, I.S. (2005). Effects of in-situ ozonation on indigenous microorganisms in diesel contaminated soil: survival and regrowth. Chemosphere. 61, 7, 923-932, DOI: 10.1016/j.chemosphere.2005.03.038.[Crossref]
  • 16. Jung, H., Sohn, K.D., Neppolian, B. & Choi, H. (2008). Effect of soil organic matter (SOM) and soil texture on the fatality of indigenous microorganisms in intergrated ozonation and biodegradation. J. Hazard. Mater. 11, 150, 3, 809-817, DOI: 10.1016/j.jhazmat.2007.05.032.[Crossref][WoS]
  • 17. Robak, M. (2002). Study of acetate utilisation and citrate secretion by Yarrowia lipolytica yeast Yarrowia lipolytica. Sci. J. Wroc. Univ. Food Technology 442, Rozprawy CXCII, 1-91 (in Polish).
  • 18. Huesemann, M.H. & Truex, M.J. (1996). The role of oxygen diffusion in passive bioremediation of petroleum contaminated soils. J. Hazard. Mater. 51, 1, 93-113, DOI: 10.1016/S0304-3894(96)01834-1.[Crossref]
  • 19. Barnet, J.A., W. Payne, T.R. & Yarrow, D. (2000). Yeast characteristics and identifi cation, Third edition, Cambridge University Press.
  • 20. Ciesielczuk, T. & Kusza, G. (2008). Contamination of fl ooded soils by polycyclic aromatic hydrocarbons (PAHs). (in) Czamara & Wiatkowski (eds.) Crisis management-fl ood protection (practical solutions). Opole Univ. 179-190. (in Polish).
  • 21. Ramus, K. & Ciesielczuk, T. (2010). Evaluating the effi - ciency of selected extraction methods for PAHs on the example of compost from urban wastes. Ecol. Chem. Eng. A. 17, 12, 1655-1661.
  • 22. Wójcikowska-Kapusta, A., Pranagal, J. & Oleszczuk, P. (2007). Content and migration of polycyclic aromatic hydrocarbons in different soils used. Ecol. Chem. Eng. 14, S2, 233-243.
  • 23. Wilcke, W., Muller, S., Kanchanakool, N., Niamskul, C. & Zech, W. (1999). Polycyclic aromatic hydrocarbons in hydromorphic soils of the tropical metropolis Bangkok. Geoderma. 91, 297-309.[Crossref]
  • 24. Lewkiewicz-Małysa, A., Rogowska-Kwas, R. & Winid, B. (2008). Reduction of environmentally hazardous hydrocabon content. Drilling. Oil. Gas. 2, 2, 453-460 (in Polish).
  • 25. Margesin, R., Hammerle, M. & Tscherko, D. (2007). Microbial activity and community composition durning bioremediation of diesel-oil-contaminated soil: effects of hydrocarbon concentration, fetilizers and incubation time. Microbial Ecology. 53, 259-269, DOI: 10.1007/s00248-006-9136-7.[WoS][Crossref]
  • 26. Kwapisz, E. (2006). Pathways of aerobic petroleum oil hydrocarbons biodegradation. Biotechnologia, 2, 3, 166-188, (in Polish).
  • 27. Nam, K. & Kukor, J.J. (2000). Combined ozonation and biodegradation for remediation of mixtures of polycyclic aromatic hydrocarbons in soil. Biodegradation. 11, 1-9.[Crossref]
  • 28. Nelson, C.H., Seaman, M., Nelson, S. & Buschbom, R. (1997). Ozone sparging for the remediation of MGP contaminants. (in): Proceeding of the Fourth Symposium on In Situ and On-Site Bioremediation, New Orleans, LA, USA.
  • 29. Zhang, X., Cheng, S., Zhu, C. & Sun, S. (2006). Microbial PAH-Degradation in Soil: Degradation Pathways and Contributing Factors. Pedosphere. 16, 5, 555-565, DOI: 10.1016/ S1002-0160(06)60088-X.[Crossref]
  • 30. IARC (1983). Monograps on the Carcinogenic Risk of Chemicals to Humans. Polynuclear Aromatic Compounds. Part 1: Chemical, Envirnomental and Experimental Data. Lyon.
  • 31. Sapota, A. (2002). Polycyclic aromatic hydrocarbons (tar substances dissolved in cyclohexane). Maximum values proposition for particular levels of occupational exposure. Princ. Met. Asses. Walk. Environ. 2, 32, 179-208 (in Polish).
  • 32. Haritash, A.K. & Kaushik, C.P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J. Hazard. Mater. 169, 1-3, 1-15, DOI: 10.1016/j. jhazmat.2009.03.137.[Crossref]
  • 33. Poglazova, M.N., Fedoseeva, G.E., Khesina, A.I., Meisel, M.N. & Shabad, L.M. (1967). Further studies on the destruction of benz (a)pyrene by soil bacteria. Dokl. Akad. Nauk SSSR. 11, 176, 5,1165-7 (in Russian).
  • 34. Dean-Ross, D., Moody, J. & Cerniglia, C.E. (2002). Utilization of mixtures of polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediment. FEMS Microbiol. Ecol. 41, 1, 1-7, DOI: 10.1111/j.1574-6941.2002.tb00960.x.[Crossref]
  • 35. Stringfellow, W.T. & Aitken, M.D. (1995). Competitive metabolism of naphthalene, methylnaphthalenes, and fl uorene by phenanthrene-degrading pseudomonads. Appl. Environ. Microbiol. 61, 1, 357-362.
  • 36. Yuan, S.Y., Shiung, L.C. & Chang, B.V. (2002). Biodegradation of polycyclic aromatic hydrocarbons by inoculated microorganisms in soil. Bull. Environ. Contam. Toxicol. 69, 1, 66-73, DOI: 10.1007/s00128-002-0011-z. [Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_pjct-2015-0023
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.